logo seis

Updated interior structure models of Mars from inversion of direct, reflected, and converted body waves

Resource type
Dataset
Creators
Cecilia Durán, Amir Khan, Savas Ceylan, Géraldine Zenhäusern, Simon Stähler, John Clinton, Domenico Giardini
Publisher
IPGP Data Center
Publication Year
2022
Abstract
This dataset contains 1000 seismic models of Mars compatible with seismic travel times and converted seismic waves of high-quality marsquakes observed until October 2021. The employed data set and the inversion procedure are detailed in Duran et al.: Seismology on Mars: an analysis of direct, reflected and converted seismic body waves with implications for interior structure, Physics of the Earth and Planetary Interiors. All model files are provided in the nd format compatible with Taup. For requirements of TauP, each model has a small inner core, which is not a result from the inversion. Lower mantle Vp structure is not constrained by seismic data since no P-related waves that travel through the deep mantle have been observed.
Data and Citation
doi:10.18715/IPGP.2022.kzwpiude

Data from the article: Thickness and structure of the martian crust from InSight seismic data

Resource type
Dataset
Creators
Brigitte Knapmeyer-Endrun, Mark. P. Panning, Felix Bissig, Rakshit Joshi, Amir Khan, Doyeon Kim, Vedran Lekić, Benoit Tauzin, Saikiran Tharimena, Matthieu Plasman, Nicolas Compaire, Raphael F. Garcia, Ludovic Margerin, Martin Schimmel, Éléonore Stutzmann, Nicholas Schmerr, Ebru Bozdağ, Ana-Catalina Plesa, Mark A. Wieczorek, Adrien Broquet, Daniele Antonangeli, Scott M. McLennan, Henri Samuel, Chloé Michaut, Lu Pan, Suzanne E. Smrekar, Catherine L. Johnson, Nienke Brinkman, Anna Mittelholz, Attilio Rivoldini, Paul M. Davis, Philippe Lognonné, Baptiste Pinot, John-Robert Scholz, Simon C. Stähler, Martin Knapmeyer, Martin Van Driel, Domenico Giardini, Bruce W. Banerdt
Publisher
Université de Paris, Institut de physique du globe de Paris, CNRS
Publication Year
2021
Abstract
This dataset contains 1D velocity models of the Martian crust at the Insight landing site from the inversion of P-to-s receiver functions, using either two or three layers to parameterize the crust. The models are from Fig. 2 of the article: Knapmeyer-Endrun, Panning, Bissig, Joshi, Khan et al. Thickness and structure of the martian crust from InSight seismic data, 2021, submitted to Science.
Data and Citation
doi:10.18715/IPGP.2021.kqwc4yaf

Upper mantle structure of Mars from InSight seismic data: Supplementary data

Resource type
Dataset
Creators
Amir Khan, Savas Ceylan, Martin van Driel, Domenico Giardini, Philippe Lognonné, Henri Samuel, Nicholas C. Schmerr, Simon C. Stähler, Andrea C. Duran, Quancheng Huang, Doyeon Kim, Adrien Broquet, Constantinos Charalambous, John F. Clinton, Paul M. Davis, Mélanie Drilleau, Foivos Karakostas, Vedran Lekic, Scott M. McLennan, Ross R. Maguire, Chloé Michaut, Mark P. Panning, William T. Pike, Baptiste Pinot, Matthieu Plasman, John-Robert Scholz, Rudolf Widmer-Schnidrig, Tilman Spohn, Suzanne E. Smrekar, William B. Banerdt
Publisher
IPGP Data Center
Publication Year
2021
Abstract
We provide two seismic velocity models that are characteristic of the inverted families of models shown in Khan et al. (2021) (cf. Fig.2A). The blue and red models correspond to models with lithospheric thicknesses in the range 400-500 km and 500-600 km (cf. Fig.2B of Khan et al. (2021)), respectively. The models are here made available in digital format as named discontinuity (.nd) files. The four columns in each files are: depth in km, P-wave velocity in km/s, S-wave velocity in km/s, and density in kg/m^3. When using or displaying the models, please cite: Khan, A., et al., Upper mantle structure of Mars from InSight seismic data, Science, 10.1126/science.abf2966, 2021.
Data and Citation
doi:10.18715/IPGP.2021.kpnr925g

Interior Models of Mars from inversion of seismic body waves

Resource type
Dataset
Creators
Simon Stähler, Amir Khan, W. Bruce Banerdt, Philippe Lognonné, Domenico Giardini, Savas Ceylan, Mélanie Drilleau, A. Cecilia Duran, Raphaël F. Garcia, Quancheng Huang, Doyeon Kim, Vedran Lekic, Henri Samuel, Martin Schimmel, Nicholas Schmerr, David Sollberger, Éléonore Stutzmann, Zongbo Xu, Daniele Antonangeli, Constantinos Charalambous, Paul Davis, Jessica C.E. Irving, Taichi Kawamura, Martin Knapmeyer, Ross Maguire, Angela G. Marusiak, Mark P. Panning, Clément Perrin, Ana-Catalina Plesa, Attilio Rivoldini, Cédric Schmelzbach, Géraldine Zenhäusern, Éric Beucler, John Clinton, Nikolaj Dahmen, Martin Van Driel, Tamara Gudkova, Anna Horleston, W. Thomas Pike, Matthieu Plasman, Suzanne E. Smrekar
Publisher
IPGP Data Center
Publication Year
2021
Abstract
This dataset contains 300 seismic models of Mars compatible with seismic travel times of marsquakes observed until January 2021. The inversion is described in detail in Stähler et al. (2021): Seismic detection of the Martian Core, Science. See the description therein. The provided zip file contains 100 models each of the "geophysical", "geodynamical" and "seismic" inversion. All model files are provided in the nd format of TauP. For compatibility reasons, each model has a small inner core. This is not a feature resolved by the inversion..
Data and Citation
doi:10.18715/IPGP.2021.kpmqrnz8

Data from the article: Seismic Noise Autocorrelations on Mars

Resource type
Dataset
Creators
Schimmel, Martin
Stutzmann, Eléonore
Lognonné, Philippe
Publisher
Université de Paris, Institut de physique du globe de Paris, CNRS
Publication Year
2021
Abstract
This dataset contains the processed data of the article: Schimmel, Stutzmann, Lognonné et al. Seismic Noise Autocorrelations on Mars, 2021, submitted to ESS. Raw data are available at doi:10.18715/SEIS.INSIGHT.XB_2016
Data and Citation
doi:10.18715/IPGP.2021.km1vsxsd

This list all published, in press or submitted (when available in public archive) scientific papers related to the SEIS experiment. Most of them are available on Open access archive (HAL, INSU, OATA, EOSSAR, etc) with link provided after the doi.

 

Years : 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023

 

2023

  • Joshi, R., Knapmeyer-Endrun, B., Mosegaard, K., Wieczorek, M. A., Igel, H., Christensen, U. R., & Lognonné, P. (2023). Joint inversion of receiver functions and apparent incidence angles to determine the crustal structure of Mars.Geophysical Research Letters, 50, doi: 10.1029/2022GL100469
  • Lognonné, P., Banerdt, WB, Clinton, J, Garcia, RF., Giardini, D. Knapmeyer, B., Panning, M. Pike, WT, Mars seismology, Annual Review in Earth and Planetary Science, in press, 2023
  • Panning, M. P., Banerdt, W. B., Beghein, C., Carrasco, S., Ceylan, S., Clinton, J. F., ... & Zenhäusern, G. (2023). Locating the largest event observed on Mars with multi‐orbit surface waves. Geophysical Research Letters, doi: 10.1029/2022GL101270.

 2022

  • Beghein, C., Li, J., Weidner, E., Maguire, R., Wookey, J., Lekić, V., ... & Banerdt, W. (2022). Crustal Anisotropy in the Martian lowlands from surface waves. Geophysical Research Letters, 49(24), doi: 10.1029/2022GL101508 (OPEN ACCESS).
  • Brinkman N, Schmelzbach C, Sollberger D, ten Pierick J, Edme P, Haag T, Kedar S, Hudson T,  Andersson F, van Driel M, Stähler S, Nicollier T, Robertsson J, Giardini D, Spohn T, Krause C, Grott M, Knollenberg J, Hurst K, Rochas L, Vallade J, Blandin S, Lognonné P, Pike WT, Banerdt WB  2022, In-situ regolith seismic velocity measurement at the InSight landing site on Mars, J. Geophys. Res. Planet, 127, e2022JE007229. doi: 10.1029/2022JE007229
  • Carrasco, S., B.Knapmeyer-Endrun, L.Margerin, C.Schmelzbach, K.Onodera, L.Pan, P. Lognonné, S.Menina, D.Giardini, E.Stutzmann, J.Clinton, S.Stähler, M.Schimmel, M.Golombek, M.Hobiger, M. Hallo, S.Kedar, W.B.Banerdt (2023), Empirical H/V spectral ratios at the InSight landing site and implications for the martian subsurface structure, Geophysical Journal International, 232, 1293–1310, https://doi.org/10.1093/gji/ggac391
  • Ceylan S, Clinton JF, Giardini D, Stähler SC, Horleston A, Kawamura T., Böse M., Charalambous C., Dahmen N.L., van Driel M., Durán C., Euchner F., Khan A., Kim D., Plasman M., Scholz J.R., Zenhäusern G., Eric Beucler, Garcia R.F., Kedar S., Knapmeyer M., Lognonné P., Panning M.P., Perrin C., Pike W.T., Stott A.E., Banerdt W.B. (2022). The marsquake catalogue from InSight, sols 0–1011, Phys. Earth Planet. Inter, 333, 106943, doi:  10.1016/j.pepi.2022.106943
  • Compaire, N., Margerin L., M Monnereau, R F Garcia, L Lange, M Calvet, N L Dahmen, S C Stähler, N Mueller, M Grott, P Lognonné, T Spohn, W B Banerdt, Seasonal variations of subsurface seismic velocities monitored by the SEIS-InSight seismometer on Mars, Geophysical Journal International, 229, 776–799, doi: 10.1093/gji/ggab499.
  • Dahmen, N. L., Zenhäusern, G., Clinton, J. F., Giardini, D., Stähler, S. C., Ceylan, S., ... & Banerdt, W. B. (2021). Resonances and lander modes observed by InSight on Mars (1–9 Hz). Bulletin of the Seismological Society of America, 111(6), 2924-2950. Preprint
  • Dahmen, Nikolaj L., et al. "MarsQuakeNet: A More Complete Marsquake Catalogue Obtained by Deep Learning Techniques." Journal of Geophysical Research: Planets (2022). doi: 10.1029/2022JE007503 (OPEN ACCESS)
  • Delage, P. J-P Castillo Betancourt, B. Caicedo Hormaza, F. Karakostas, E.De Laure, P.Lognonné, D. Antonangeli, and B.Banerdt, The interaction between the SEIS seismometer of the InSight Martian mission and a regolith simulant, Géotechnique 0 0:0, 1-12, doi: 10.1680/jgeot.21.00171.
  • Drilleau, M., Samuel, H., Garcia, R. F., Rivoldini, A., Perrin, C., Michaut, C., et al. (2022). Marsquake locations and 1-D seismic models for Mars from InSight data. Journal of Geophysical Research: Planets, 127, e2021JE007067. doi: 10.1029/2021JE007067 (OPEN ACCESS)
  • Durán, C., Khan, A., Ceylan, S., Zenhäusern, G., Stähler, S., Clinton, J.F., Giardini, D.: Seismology on Mars: An analysis of direct, reflected, and converted seismic body waves with implications for interior structure. Physics of the Earth and Planetary Interiors325, 106851 (2022). doi: 10.1016/j.pepi.2022.106851 (OPEN ACCESS)
  • Durán, C., Khan, A., Ceylan, S., Charalambous, C., Kim, D., Drilleau, M., Samuel, H., Giardini, D.: Observation of a core-diffracted P-wave from a farside impact with implications for the lower-mantle structure of Mars. Geophysical Research Letters49(21), 2022–100887 (2022). doi: 10.1029/2022GL100887 (OPEN ACCESS)
  • Fernando, B., Wójcicka, N., Maguire, R. et al.. Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronnomy , 6., 59-64 doi: 10.1038/s41550-021-01502-0. (OPEN ACCESS)
  • Garcia, R. F., Daubar, I. J., Beucler, É., Posiolova, L. V., Collins, G. S., Lognonné, P., ... & Banerdt, W. B. (2022). Newly formed craters on Mars located using seismic and acoustic wave data from InSight. Nature Geoscience, 15(10), 774-780. doi: 10.1038/s41561-022-01014-0
  • Giardini, D., Ceylan, S., Clinton, J., Lognonné, P., & Stähler, S. (2022). The Seismicity of Mars Observed by the NASA InSight Mission. European Review, 30(5), 639-656. doi:10.1017/S1062798722000254
  • Gibet, V. B., Michaut, C., Wieczorek, M., & Lognonné, P. (2022). A positive feedback between crustal thickness and melt extraction for the origin of the Martian dichotomy. Journal of Geophysical Research: Planets, doi: 10.1029/2022JE007472. (OPEN ACCESS)
  • Huang Q, Schmerr NC, King SD, Kim D, Rivoldini A, Plesa A-C, Samuel H, Maguire RR, Karakostas F, Lekić V, Charalambous C, Collinet M, Myhill R, Antonangeli D, Drilleau M, Bystricky M, Bollinger C, Michaut C, Gudkova T, Irving JCE, Horleston A, Fernando B, Leng K, Nissen-Meyer T, Bejina F, Bozdağ E, Beghein C, Waszek L, Siersch NC, Scholz J-R, Davis PM.  Lognonné P, Pinot B, Widmer-Schnidrig R, Panning MP, Smrekar SE, Spohn T, Pike WT, Giardini D, Banerdt WB. 2022, Seismic detection of a deep mantle discontinuity within Mars by InSight, Proc. Nat. Acad. Sci, 119 (42) e2204474119, doi: 10.1073/pnas.2204474119
  • Horleston, A., J.F. Clinton, S.Ceylan, D.Giardini, C.Charalambous, J.C. E. Irving, P.Lognonné, S.C. Stähler, G.Zenhäusern, N.L. Dahmen, C.Duran, T.Kawamura, A.Khan, D.Kim, M.Plasman, F.Euchner, C.Beghein, É.Beucler, Q.Huang, M.Knapmeyer, B.Knapmeyer-Endrun, V.Lekić, J.Li, C.Perrin, M. Schimmel, N.C. Schmerr, A.E. Stott, E.Stutzmann, N.A. Teanby, Z.Xu, Ma.Panning, W.B. Banerdt. The Far Side of Mars: Two Distant Marsquakes Detected by InSight. The Seismic Record, 2, 88 doi: 10.1785/0320220007.
  • Jacob, A., M. Plasman, C. Perrin, N. Fuji, P. Lognonné, Z. Xu, M. Drilleau, N. Brinkman, S. Stähler, G. Sainton, A. Lucas, D. Giardini, T. Kawamura, J. Clinton, W.B. Banerdt, Seismic sources of InSight marsquakes and seismotectonic context of Elysium Planitia, Mars, Tectonophysics, 837, doi: 10.1016/j.tecto.2022.229434 (OPEN ACCESS).
  • Kawamura, T., Clinton, J. F., Zenhäusern, G., Ceylan, S., Horleston, A. C., Dahmen, N. L., ... & Banerdt, W. B. (2022). S1222a‐the largest Marsquake detected by InSight. Geophysical Research Letters, doi: 10.1029/2022GL101543.
  • Kim, D., S. C. Stähler, S. Ceylan, V. Lekic, R. Maguire, G. Zenhäusern, J. Clinton, D. Giardini, A. Khan, M. P. Panning, P. Davis, M. Wieczorek, N. Schmerr, ,P. Lognonné, W. B. Banerdt, Structure Along the Martian Dichotomy Constrained by Fundamental-mode Rayleigh and Love Waves and Their Overtones, Geophys. Res. Lett, 49, doi: 10.1029/2022GL101666
  • D. Kim, W. B. Banerdt, S. Ceylan, D. Giardini, V. Lekic, P. Lognonné, C. Beghein, É. Beucler, S. Carrasco, C. Charalambous, J. Clinton, M. Drilleau, C. Durán, M. Golombek, R. Joshi, A. Khan, B. Knapmeyer-Endrun, J. Li, R. Maguire, W. T. Pike, H.Samuel, M. Schimmel, N. Schmerr, S. C. Stähler, E. Stutzmann, M. Wieczorek, Z. Xu, A. Batov, E. Bozdag, N. Dahmen, P. Davis, T. Gudkova, A. Horleston, Q. Huang, T. Kawamura, S. King, S. M. McLennan, F. Nimmo, M. Plasman, A. C. Plesa, I. E. Stepanova, E. Weidner, G. Zenhäusern, I. J. Daubar, B. Fernando, R. Garcia, L. V. Posiolova, M. P. Panning (2022), Surface Waves and Crustal Structure on Mars, Science, 378, 417-421, doi: 10.1126/science.abq7157
  • Li, J., C.Beghein, J.Wookey, P.Davis, P.Lognonné, M.Schimmel, E.Stutzmann, M.Golombek, J-P. Montagner, W.B. Banerdt, Evidence for crustal seismic anisotropy at the InSight lander site, Earth and Planetary Science Letters, 593, 117654, doi: 10.1016/j.epsl.2022.117654.
  • Li J., C Beghein, P. Lognonné, S.McLennan, M.Wieczorek, M.Panning, B.Knapmeyer-Endrun, P.Davis, W.B. Banerdt (2022), Different Martian Crustal Seismic Velocities across the Dichotomy Boundary from Multi-Orbiting Surface Waves, Geophys. Res. Let, 49, e2022GL101243, doi: 10.1029/2022GL101243hal-03938829
  • Li, J., Beghein, C., Davis, P., Wieczorek, M. A., McLennan, S. M., Kim, D., Lekić V, Golombek M, Schimmel M, Stutzmann E, Lognonné P, William Bruce Banerdt. (2022). Crustal Structure Constraints from the Detection of the SsPp Phase on Mars. Earth and Space Science, 9, e2022EA002416. doi: 10.1029/2022EA002416
  • Li, J., C. Beghein, S.McLennan, A.Horleston, C.Charalambous, Q.Huang, G.Zenhäusern, E.Bozdag, W.Pike, M.Golombek, V.Lekic, P.Lognonné, and W.B.Banerdt (2022)  Constraints on the Martian Crust Away From the InSight Landing Site, Nature communication, 13, 7950, doi: 10.1038/s41467-022-35662-y.
  • Perrin, C., Jacob, A., Lucas, A., Myhill, R., Hauber, E., Batov, A., Gudkova, T., Rodriguez, S., Lognonné, P., Stevanović, J., Drilleau, M. & Fuji, N. (2022) Geometry and segmentation of Cerberus Fossae, Mars: implications for marsquake properties in Elysium Planitia, Journal of Geophysical Research: Planets, 127(1), doi: 10.1029/2021JE007118 (OPEN ACCESS)
  • L. V. Posiolova, P. Lognonné,  W. B. Banerdt, J. Clinton, G. S. Collins,T. Kawamura, S. Ceylan, I. Daubar, B. Fernando, M. Froment, D. Giardini, M. C. Malin, K. Miljković, S. C. Stähler, Z. Xu, M. E. Banks,E. Beucler, B. A. Cantor, C. Charalambous, N. Dahmen, P. Davis, M. Drilleau, C. M. Dundas, C. Duran,F. Euchner, R. F. Garcia, M. Golombek, A. Horleston, C. Keegan, A. Khan, D. Kim,C. Larmat, R. Lorenz, L. Margerin, S. Menina, M. Panning, C. Pardo, C. Perrin, W. T. Pike, M. Plasman, A. Rajšić, L. Rolland, E. Rougier, G. Speth, A. Spiga, A. Stott, D. Susko, N. A. Teanby, A. Valeh, A. Werynski, N. Wojcicka, G. Zenhäusern (2022). Largest recent impact craters on Mars: Orbital imaging and surface seismic co-investigation, Science, 378, 412-417,
    doi: 10.1126/science.abq7704
  • Pou, L., Nimmo, F., Rivoldini, A., Khan, A., Bagheri, A., Gray, T., Samuel H, Lognonné P., Plesa A-C, Gudkova T, Giardini D (2022). Tidal constraints on the Martian interior. Journal of Geophysical Research: Planets127, e2022JE007291. doi: 10.1029/2022JE007291
  • Shi, J., M. Plasman, B. Knapmeyer-Endrun, Z. Xu, T. Kawamura, P. Lognonné, S.M. McLennan, G. Sainton, W. B. Banerdt, M. P. Panning, and T. Wang, High-frequency receiver functions with event S1222a reveal a 1 discontinuity in the Martian shallow crust Geophysical Research Letters, doi: 10.1029/2022GL101627
  • T. Spohn, T. L. Hudson, E. Marteau, M. Golombek, M. Grott, T. Wippermann, K. S. Ali, C. Schmelzbach, S. Kedar, K. Hurst, A. Trebi-Ollennu, V. Ansan, J. Garvin, J. Knollenberg, N. Müller, S. Piqueux, R. Lichtenheldt, C. Krause, C. Fantinati, N. Brinkman, D. Sollberger, P. Delage, C. Vrettos, S. Reershemius, L. Wisniewski, J. Grygorczuk, J. Robertsson, P. Edme, F. Andersson, O. Krömer, P. Lognonné, D. Giardini, S. E. Smrekar & W. B. Banerdt, The InSight HP3 Penetrator (Mole) on Mars: Soil Properties Derived from the Penetration Attempts and Related Activities, Space Science review, 28, 72, doi: 10.1007/s11214-022-00941-z (OPEN ACCESS)
  • Stähler SC, Mittelholz A, Perrin C, Kawamura T, Kim D,  Knapmeyer M, Zenhäusern G, Clinton J, Giardini D, Lognonné P and Banerdt WB. 2022. Tectonics of Cerberus Fossae unveiled by marsquakes, Nature Astronomy, doi:  10.1038/s41550-022-01803-y
  • Stott, A., Garcia, R., Chédozea A., Spiga, A., Murdoch N., Pinot B., Mimoun D., Charalambous C., Horleston, A., King S., Kawamura T., Dahmen N.,  Barkaoui S.,  Lognonné P., Banerdt W.B. (2022), Machine learning and marsquakes: a tool to predict atmospheric-seismic noise for the NASA InSight mission, Geophys. J. Int., ggac464, https://doi.org/10.1093/gji/ggac464
  • Wieczorek, M. A., Broquet, A., McLennan, S. M., Rivoldini, A., Golombek, M., Antonangeli, D., Beghein, C., Giardini, D., Gudkova, Gyalay, T.S., Johnson, C.L., Joshi, R., Kim, D., King, S.C. Knapmeyer-Endrun, , B. Lognonné, P., Michaut, C., Mittelholz, A., Nimmo, F., Ojha, L., Panning, M.P., Plesa, A-C., Siegler, M.A., Smrekar, S.E., Spohn, T., Banerdt, W.B. InSight constraints on the global character of the Martian crust. Journal of Geophysical Research: Planets, 127, e2022JE007298. doi: 10.1029/2022JE007298. (OPEN ACCESS)
  • Xu, Z., Froment, M., Garcia, R. F., Beucler, É., Onodera, K., Kawamura, T., P.Lognonné and W.B.Banerdt (2022). Modeling seismic recordings of high-frequency guided infrasound on Mars. Journal of Geophysical Research: Planets127, e2022JE007483. doi: 10.1029/2022JE007483
  • Yana C, Lapeyre R, Gaudin E, Hurst K, Lognonné, P, Rochas L (2023), Deployment and surface operations of the SEIS instrument onboard the InSight mission, Acta Astronautica, 202, 772-781, doi: 10.1016/j.actaastro.2022.10.010, hal-03938815
  • Zenhäusern, G. S.C. Stähler, J.F. Clinton, D.Giardini, S.Ceylan, R.F. Garcia; Low‐Frequency Marsquakes and Where to Find Them: Back Azimuth Determination Using a Polarization Analysis Approach. Bulletin of the Seismological Society of America 2022; 112 (4): 1787–1805. doi: 10.1785/0120220019 ( OPEN ACCESS: https://arxiv.org/abs/2204.12959)

2021

  • Bagheri, A., Khan, A., Efroimsky, M. et al. Dynamical evidence for Phobos and Deimos as remnants of a disrupted common progenitor. Nat Astron (2021). doi: https://doi.org/10.1038/s41550-021-01306-2.
  • Brinkman, N., Stähler, S. C., Giardini, D., Schmelzbach, Cé., Khan, A., Jacob, A., et al. (2021). First focal mechanisms of marsquakes. Journal of Geophysical Research: Planets, 126, e2020JE006546. doi: https://doi.org/10.1029/2020JE006546. Preprint
  • Charalambous, C., Stott, A. E., Pike, W. T., McClean, J. B., Warren, T., Spiga, A., et al. (2021). A Comodulation Analysis of Atmospheric Energy Injection into the Ground Motion at InSight, Mars. Journal of Geophysical Research: Planets, 126, e2020JE006538. doi: https://doi.org/10.1029/2020JE006538 (OPEN ACCESS)
  • Compaire, N., Margerin, L., Monnereau, M., Garcia, R. F., Lange, L., Calvet, M., ... & Banerdt, W. B. (2021). Seasonal variations of subsurface seismic velocities monitored by the SEIS-InSight seismometer on Mars. Geophysical Journal International. doi: https://doi.org/10.1093/gji/ggab499
  • Compaire, N., Margerin, L., Garcia, R.F., Pinot, B., Calvet, M., Orhand‐Mainsant, G., et al. (2021). Autocorrelation of the ground vibrations recorded by the SEIS‐InSight seismometer on Mars.. Journal of Geophysical Research: Planets, 126, e2020JE006498. doi: https://doi.org/10.1029/2020JE006498, https://hal.archives-ouvertes.fr/hal-03166865
  • Dahmen, N. L., Clinton, J. F., Ceylan, S., van Driel, M., Giardini, D., Khan, A., et al. (2021). Super high frequency events: A new class of events recorded by the InSight seismometers on Mars. Journal of Geophysical Research: Planets, 126, e2020JE006599. doi:  https://doi.org/10.1029/2020JE006599 linkETH
  • Drilleau M., Samuel H., Rivoldini A., Panning M., Lognonné P., Bayesian inversion of the Martian structure using geodynamic constraints, Geophysical Journal International, 2021, ggab105, doi: https://doi.org/10.1093/gji/ggab105. Preprint
  • van Driel, M., Ceylan, S., Clinton, J. F., Giardini, D., Horleston, A., Margerin, L., et al. (2021). High‐frequency seismic events on Mars observed by InSight. Journal of Geophysical Research: Planets, 126, e2020JE006670. doi: https://doi.org/10.1029/2020JE006670
  • Fernando B. , Wójcicka N. , Han Z. , Stott A., Ceylan S. , Charalambous C., Collins G.,S., Estévez D. , Froment M. , Golombek M., Gülzow P., Horleston A., Karatekin O, Kawamura T., Larmat C., Maguire R., Nissen-Meyer T., Plasman M., Qia Y., Rolland L., Spiga A., Stähler S., Teanby N., A., Zhao Y., S. , Giardini G., Lognonné P., Daubar I.J., Questions to Heaven, Astronomy & Geophysics, Volume 62, Issue 6, December 2021, Pages 6.22–6.25, https://doi.org/10.1093/astrogeo/atab103
  • Fernando, B., Wójcicka, N., Maguire, R., Stähler, S. C., Stott, A. E., Ceylan, S., ... & Daubar, I. J. (2021). Seismic constraints from a Mars impact experiment using InSight and Perseverance. Nature Astronomy, 1-6. https://doi.org/10.1038/s41550-021-01502-0
  • Fernando, B., Wójcicka, N., Froment, M., Maguire, R., Stähler, S. C., Rolland, L., et al. (2021). Listening for the Landing: Seismic Detections of Perseverance's arrival at Mars with InSight. Earth and Space Science, 8, e2020EA001585. doi:  https://doi.org/10.1029/2020EA001585 (OPEN ACCESS), preprint eartharxiv.
  • Garcia R.F., Naomi Murdoch, Ralph Lorenz, Aymeric Spiga, Daniel C. Bowman, Philippe Lognonné, Don Banfield, William Bruce Banerdt; Search for Infrasound Signals in InSight Data Using Coupled Pressure/Ground Deformation Methods. Bulletin of the Seismological Society of America 2021; 111 (6): 3055–3064. doi: https://doi.org/10.1785/0120210079
  • Hobiger, M., Hallo, M., Schmelzbach, C. et al. The shallow structure of Mars at the InSight landing site from inversion of ambient vibrations. Nat Commun 12, 6756 (2021). https://doi.org/10.1038/s41467-021-26957-7
  • Foivos Karakostas, Nicholas Schmerr, Ross Maguire, Quancheng Huang, Doyeon Kim, Vedran Lekic, Ludovic Margerin, Ceri Nunn, Sabrina Menina, Taichi Kawamura, Philippe Lognonné, Domenico Giardini, Bruce Banerdt; Scattering Attenuation of the Martian Interior through Coda‐Wave Analysis. Bulletin of the Seismological Society of America 2021; 111 (6): 3035–3054. doi: https://doi.org/10.1785/0120210253
  • Kedar, S., Panning, M. P., Smrekar, S. E., Stähler, S. C., King, S. D., Golombek, M. P., et al. (2021). Analyzing Low Frequency Seismic Events at Cerberus Fossae as Long Period Volcanic Quakes. Journal of Geophysical Research: Planets, 126, e2020JE006518. doi: https://doi.org/10.1029/2020JE006518
  • Khan A, Ceylan S, van Driel M, Giardini D, Lognonné P, Samuel H, Schmerr N, Stähler S, Duran A, Huang Q, Kim D, Broquet A, Charalambous C, Clinton J, Davis P, Drilleau M, Karakostas F, Lekic V, McLennan S, Maguire R, Michaut C, Panning M, Pike W, Pinot B, Plasman M, Scholz J, Widmer-Schnidrig R, Spohn T, Smrekar S and Banerdt W (2021) Upper mantle structure of Mars from InSight seismic data, Science, 373:6553, (434-438), doi: https://doi.org/10.1126/science.abf2966
  • Knapmeyer-Endrun B, Panning M, Bissig F, Joshi R, Khan A, Kim D, Lekić V, Tauzin B, Tharimena S, Plasman M, Compaire N, Garcia R, Margerin L, Schimmel M, Stutzmann É, Schmerr N, Bozdağ E, Plesa A, Wieczorek M, Broquet A, Antonangeli D, McLennan S, Samuel H, Michaut C, Pan L, Smrekar S, Johnson C, Brinkman N, Mittelholz A, Rivoldini A, Davis P, Lognonné P, Pinot B, Scholz J, Stähler S, Knapmeyer M, van Driel M, Giardini D and Banerdt W (2021) Thickness and structure of the martian crust from InSight seismic data, Science, 373:6553, (438-443), doi: https://doi.org/10.1126/science.abf8966
  • M. Knapmeyer, S.C. Stähler, I. Daubar, F. Forget, A. Spiga, T. Pierron, M. van Driel, D. Banfield, E. Hauber, M. Grott, N. Müller, C. Perrin, A. Jacob, A. Lucas, B. Knapmeyer-Endrun, C. Newman, M.P. Panning, R.C. Weber, F.J. Calef, M. Böse, S. Ceylan, C. Charalambous, J. Clinton, N. Dahmen, D. Giardini, A. Horleston, T. Kawamura, A. Khan, G. Mainsant, M. Plasman, M. Lemmon, R. Lorenz, W.T. Pike, J.-R. Scholz, P. Lognonné, B. Banerdt (2021), Seasonal seismic activity on Mars, Earth and Planetary Science Letters, Volume 576, 2021, 117171, doi: https://doi.org/10.1016/j.epsl.2021.117171
  • Lorenz, R.D. Spiga, A. Lognonné, P., Plasman, M., Newman, C.E, Charalambous, C. (2021),  The whirlwinds of Elysium: A catalog and meteorological characteristics of “dust devil” vortices observed by InSight on Mars, Icarus, 355, doi : 10.1016/j.icarus.2020.114119. hal-03081243
  • Murdoch, N., Spiga, A., Lorenz, R., Garcia, R. F., Perrin, C., Widmer‐Schnidrig, R., et al. (2021). Constraining Martian regolith and vortex parameters from combined seismic and meteorological measurements. Journal of Geophysical Research: Planets, 126, e2020JE006410. doi: https://doi.org/10.1029/2020JE006410 - FREE ACCESS: https://oatao.univ-toulouse.fr/27566/1/Murdoch_27566.pdf
  • Neidhart T. , Miljković K., Sansom E.K.,  Devillepoix H.A.R., Kawamura T. , Dimech J.-L., Wieczorek M.A., Bland P.A., (2021), Statistical analysis of fireballs: Seismic signature survey, accepted for publication in PASA, préprint arXiv:2102.11534v1
  • Rajšić, A., Miljković, K., Collins, G. S., Wünnemann, K., Daubar, I. J., Wójcicka, N., & Wieczorek, M. A. (2021). Seismic efficiency for simple crater formation in the Martian top crust analog. Journal of Geophysical Research: Planets, 126, e2020JE006662. doi: https://doi.org/10.1029/2020JE006662
  • Plesa, A.-C., Bozdağ, E., Rivoldini, A., Knapmeyer, M., McLennan, S. M., Padovan, S., et al. (2021). Seismic velocity variations in a 3D Martian mantle: Implications for the InSight measurements. Journal of Geophysical Research: Planets, 126, e2020JE006755. doi: https://doi.org/10.1029/2020JE006755
  • Pou, L., Nimmo, F., Lognonné, P., Mimoun, D., Garcia, R. F., Pinot, B., A. Rivoldini D. Banfield W. B. Banerdt (2021). Forward Modeling of the Phobos Tides and applications to the first Martian year of the InSight mission. Earth and Space Science, 8, e2021EA001669, doi: https://doi.org/10.1029/2021EA001669 (OPEN ACCESS)
  • Samuel, H., Ballmer, M. D., Padovan, S., Tosi, N., Rivoldini, A., & Plesa, AC. (2021). The thermo‐chemical evolution of Mars with a strongly stratified mantle. Journal of Geophysical Research: Planets, 126, e2020JE006613. doi: https://doi.org/10.1029/2020JE006613
  • Samuel H. , Ballmer M.D., Padovan S. , Nicola N. , Rivoldini A., Plesa A.-C., The thermo-chemical evolution of Mars with a strongly stratified mantle, submitted to Journal of Geophysical Research: Planets, Preprint
  • Schimmel, M., Stutzmann, E., Lognonné, P., Compaire, N., Davis, P., Drilleau, M., Garcia, R., Kim,D., Knapmeyer-Endrun, B., Lekic, V., Margerin, L., Panning, M., Schmerr, N., Scholz, J.R., Spiga, A., Tauzin, B., Banerdt, B., (2021). Seismic noise autocorrelations on Mars. Earth and Space Science, 8, e2021EA001755. https://doi.org/10.1029/2021EA001755
  • Savoie, D., Richard, A., Goutaudier, M., Lognonné, P., Hurst, K., Maki, J.N., et al. (2021). Finding SEIS North on Mars: Comparisons between SEIS sundial, Inertial and Imaging measurements and consequences for seismic analysis. Earth and Space Science, 8, e2020EA001286. doi: https://doi.org/10.1029/2020EA001286 (OPEN ACCESS)
  • Sollberger, D., Schmelzbach, C., Andersson, F., Robertsson, J. O. A., Brinkman, N., Kedar, S., W. B. Banerdt, J. Clinton, M. van Driel, R. Garcia, D. Giardini, M. Grott, T. Haag, T. L. Hudson P. Lognonné, J. ten Pierick, W. Pike, T. Spohn, S.C. Stähler, P.Zweifel (2021). A reconstruction algorithm for temporally aliased seismic signals recorded by the InSight Mars lander. Earth and Space Science, 8, e2020EA001234, doi: https://doi.org/10.1029/2020EA001234
  • Stähler S, Khan A, Banerdt W, Lognonné P, Giardini D, Ceylan S, Drilleau M, Duran A, Garcia R, Huang Q, Kim D, Lekic V, Samuel H, Schimmel M, Schmerr N, Sollberger D, Stutzmann É, Xu Z, Antonangeli D, Charalambous C, Davis P, Irving J, Kawamura T, Knapmeyer M, Maguire R, Marusiak A, Panning M, Perrin C, Plesa A, Rivoldini A, Schmelzbach C, Zenhäusern G, Beucler É, Clinton J, Dahmen N, van Driel M, Gudkova T, Horleston A, Pike W, Plasman M and Smrekar S (2021) Seismic detection of the martian core, Science, 373:6553, (443-448), doi: https://doi.org/10.1126/science.abi7730,  Preprint
  • Alexander E. Stott, Constantinos Charalambous, Tristram J. Warren, William T. Pike, Robert Myhill, Naomi Murdoch, John B. McClean, Ashitey Trebi‐Ollennu, Grace Lim, Raphael F. Garcia, David Mimoun, Sharon Kedar, Kenneth J. Hurst, Marco Bierwirth, Philippe Lognonné, Nicholas A. Teanby, Anna Horleston, William B. Banerdt; The Site Tilt and Lander Transfer Function from the Short‐Period Seismometer of InSight on Mars. Bulletin of the Seismological Society of America 2021; 111 (6): 2889–2908. doi: https://doi.org/10.1785/0120210058
  • Stutzmann E., Schimmel. M., 
    Lognonné P., 
    Horleston A., 
    Ceylan S., 
    van Driel M. , 
    Stahler S., 
    Banerdt B., 
    Calvet, M., 
    Charalambous C. , 
    Clinton J. , 
    Drilleau
    M.
    ,  Fayon
    L., 
    Garcia R. F. , 
    Giardini
    D.
    ,  Hurst
    K.
    ,  Jacob
    A.
    ,  Kawamura
    T.
    ,  Kenda
    B.
    , Margerin
    L.
    , 
    Murdoch N., 
    Panning
    M.
    ,  Pike
    T.
    ,  Scholz
    J.‐R.
    , 
    A. Spiga (2021). 
    The Polarization of Ambient Noise on Mars. Journal of Geophysical Research: Planets, 126, e2020JE006545. doi:10.1029/2020JE006545 (OPEN ACCESS)
  • Xu, H., Beghein, C.,  Panning, M.P., Drilleau, M., Lognonné, P., van Driel, M., Ceylan, S., Böse, M., Brinkman, N., Clinton, J., Euchner, F., Giardini, D., Horleston, A., Kawamura, T., Kenda, B., Murdoch, N., and Stähler, S. (2020), Measuring Fundamental and Higher Mode Surface Wave Dispersion on Mars From Seismic Waveforms, Earth and Space Science, doi:10.1029/2020EA001263 (OPEN ACCESS)

 

2020

  • Balestra, J., D.Ambrois, J.L. Berenguer, F. Bigot-Cormier, F. Courboulex, L. Rolland, D.Ambrois, M. Van Driel and P.Lognonné (2020), Education: Bring ‘InSight Blind Test’ into the classrooms, on line, Seismological Research Letters, 91, 1064–1073, doi: 10.1785/0220190137, hal-02461538v1.
  • Banerdt, W.B., S. Smrekar, D. Banfield, D. Giardini, M. Golombek, C. Johnson, P. Lognonné, A. Spiga, T. Spohn, C. Perrin, S. Stähler, D. Antonangeli, S. Asmar, C. Beghein, Neil Bowles, E. Bozdag, P. Chi, U. Christensen, J. Clinton, G. Collins, I. Daubar, V.  Dehant, M. Drilleau, M. Fillingim, W. Folkner, R. Garcia, J. Garvin, J. Grant, M. Grott, J. Grygorczuk, T. Hudson, J. Irving, Günter Kargl, T. Kawamura, S. Kedar, S. King, B. Knapmeyer-Endrun, M. Knapmeyer, M. Lemmon, R. Lorenz, J. Maki, L. Margerin, S. McLennan, C. Michaut, D. Mimoun, A. Mittelholz, A. Mocquet, P. Morgan, N. Mueller, N. Murdoch, S. Nagihara, C. Newman, F. Nimmo, M. Panning, W. Pike, A.-C. Plesa, S. Rodriguez, J. Rodriguez-Manfredi, C. Russell, N. Schmerr, M. Siegler, S. Stanley, E. Stutzmann, N. Teanby, J. Tromp, M. van Driel, N. Warner, R. Weber, and M. Wieczorek (2020), Initial results from the InSight mission on Mars, Nature Geoscience, 13, 183-189,  doi: 10.1038/s41561-020-0544-y, hal-02531541v1.
  • Banfield, D., A. Spiga, C. Newman, F. Forget, M. Lemmon, R. Lorenz, N. Murdoch, D. Viudez-Moreiras, J. Pla-Garcia, R. Garcia, P. Lognonné, C. Perrin, L. Martire, Ö. Karatekin, N. Teanby, B. Van Hove, J. Maki, B. Kenda, N. Mueller, S. Rodriguez, T. Kawamura, J. McClean, A. Stott, C. Charalambous, E. Millour, C. Johnson, A. Mittelholz, A. Määttänen, S. Lewis, J. Clinton, S. Stähler, S. Ceylan, D. Giardini, T. Warren, W. Pike, I. Daubar, M. Golombek, L. Rolland, R. Widmer-Schnidrig, D. Mimoun, É. Beucler, A. Jacob, A. Lucas, M. Baker, V. Ansan, K. Hurst, L. Mora-Sotomayor, S. Navarro Lopez, J. Torres, A. Lepinette, A. Molina, M. Marin-Jimenez, J. Gomez-Elvira, V. Peinado, J. Rodriguez-Manfredi, B. Carcich, S. Sackett, C. Russell, T. Spohn, S. Smrekar, and W. Banerdt (2020), The atmosphere of Mars as observed by InSight, Nature Geoscience, 13,190-198, doi: 10.1038/s41561-020-0534-0, hal-02641370v2.
  • Brinkman, N., Stähler, S. C., Giardini, D., Schmelzbach, C., Jacob, A., Fuji, N., Perrin, C., Lognonné, P., Böse, M., Knapmeyer-Endrun, B., Beucler, E., Ceylan, S., Clinton, J. F., Charalambous, C., van Driel, M., Euchner, F., Horleston, A., Kawamura, T., Khan, A., Mainsant, G., Panning, M. P., Pike, W. T., Scholz, J.-R., Robertsson, J. O. A., & Banerdt, W. B. (2020). Single-station moment tensor inversion on Mars. Journal of Geophysical Research-Planets. submitted, preprint ESSOAR
  • Ceylan, S., J.Clinton, D.Giardini, M.Boese, C.Charalambous, M. van Driel, A. Horleston, T. Kawamura, A. Khan, G. Orhand-Mainsant, J-R. Scholz, S. C. Stähler, F. Euchner, W. B. Banerdt, P. Lognonné, D. Banfield, E. Beucler, R. F. Garcia, S. Kedar, M. Panning, T. Pike, S. Smrekar, A. Spiga, N. Dahmen, K. Hurst, A. Stott, R. Lorenz, M. Schimmel, E. Stutzmann, J. ten Pierick, V. Conejero, C. Pardo, C. Perrin (2020), Companion guide to the Marsquake Catalog from InSight, Sols 0-478: data content and non-seismic events, Physic. Planet. Earth. Int, doi: 10.1016/j.pepi.2020.106597, preprint OSF.
  • Charalambous, C., McClean, J. B., Baker, M., Pike, W. T., Golombek, M. P., Lemmon, M., Ansan, V., Perrin, C., Spiga, A., Lorenz, R., Banks, M. E., Rodriguez, S., Murdoch, N., Weitz, C. M., Grant, J. A., Warner, N. H., Daubar, I. J., Hauber, E., Stott, A. E., Johnson, C. L., Mittelholz, A., Warren, T., Navarro, S., Mora-Sotomayor, L., Maki, J., Lucas, A., Banfield, D., Newman, C., Viúdez-Moreiras, D., Pla-García, J., Lognonné, P., & Banerdt, W. B. (2020). Aeolian changes at the InSight landing site: Multi-instrument observations, submitted to Journal of Geophysical Research-Planets. Preprint ESSOAR
  • Charalambous, C., A. E. Stott, W. T. Pike, J. B. McClean, T. Warren, A. Spiga, D. Banfield, R. F. Garcia, J. Clinton, S. Stähler, S. Navarro, P.Lognonné, J-R. Scholz, T. Kawamura, M. van Driel, M. Böse, S.Ceylan, A. Khan, A. Horleston, G. Orhand-Mainsant , L. M.Sotomayor, N. Murdoch, D. Giardini and W. B. Banerdt (2020), submitted to Earth and Space Science, preprint ESSOAR
  • Clinton, J., S.Ceylan, M. van Driel , D.Giardini, S. C. Stähler , M.Boese, C.Charalambous, N.Dahmen, A. Horleston, T. Kawamura, A. Khan, G. Orhand-Mainsant, J-R. Scholz, , F. Euchner, W. B. Banerdt, P. Lognonné, D. Banfield, E. Beucler, R. F. Garcia, S. Kedar, M. Panning, C. Perrin, T. Pike, S. Smrekar, A. Spiga, A. Stott, (2020), The Marsquake Catalog from InSight, Sols 0-478: data content and non-seismic events, Physic. Planet. Earth. Int., 106595, doi: 10.1016/j.pepi.2020.106595, preprint OSF
  • Daubar, I. J., Lognonné, P., Teanby, N. A., Collins, G. S., Clinton, J., Stähler, S., A. Spiga F. Karakostas S. Ceylan M. Malin A. S. McEwen R. Maguire C. Charalambous K. Onodera A. Lucas L. Rolland J. Vaubaillon T. Kawamura M. Böse A. Horleston M. van Driel J. Stevanović K. Miljković B. Fernando Q. Huang D. Giardini C. S. Larmat K. Leng A. Rajšić N. Schmerr N. Wójcicka T. Pike J. Wookey S. Rodriguez R. Garcia M. E. Banks L. Margerin L. Posiolova B. Banerdt (2020). A New Crater Near InSight: Implications for Seismic Impact Detectability on Mars. Journal of Geophysical Research: Planets125, e2020JE006382, doi: 10.1029/2020JE006382., hal-02933048v1.
  • Drilleau, M., Beucler, E., Lognonné, P., Panning, M. P., Knapmeyer-Endrun, B., Banerdt, W. B., Beghein, C., Ceylan, S., van Driel, M., Joshi, R., Kawamura, T., Khan, A., Menina, S., Rivoldini, A., Samuel, H., Stähler, S., Xu, H., Bonnin, M., Clinton, J., Giardini, D., Kenda, B., Lekic, V., Mocquet, A., Murdoch, N., Schimmel, M., Smrekar, S. E., Stutzmann, E., Tauzin, B., & Tharimena, S. (2020) MSS/1: Single‐station and single‐event marsquake inversion, Earth and Space Science7, e2020EA001118. doi: 10.1029/2020EA001118, hal-03031062v1
  • Dahmen, N.L., J.F. Clinton, S.Ceylan, M. van Driel, D. Giardini, A. Khan, S. C. Stähler, M. Böse, C. Charalambous, A. Horleston , T. Kawamura, G. Orhand-Mainsant, J-R. Scholz, F.Euchner, W.T. Pike, R.C. Weber, P. Lognonné and W. B. Banerdt (2020), Super high frequency events: a new class of events recorded by the InSight seismometers on Mars, Journal of Geophysical Research: Planets, e2020JE006599, doi: 10.1029/2020JE006599
  • Froment, M., Rougier, E., Larmat, C., Lei, Z., Euser, B., Kedar, S., Richardson, J.E., Kawamura, T., Lognonné, P. (2020). Lagrangian‐based simulations of hypervelocity impact experiments on Mars regolith proxy. Geophysical Research Letters47, e2020GL087393. doi: 10.1029/2020GL087393, hal-02975098v1
  • Garcia, R. F., Kenda, B., Kawamura, T., Spiga, A., Murdoch, N., Lognonné, P. H., Widmer‐Schnidrig, R. Compaire, N., Orhand‐Mainsant, G., Banfield, D., Banerdt W.B. (2020). Pressure effects on the SEIS‐InSight instrument, improvement of seismic records, and characterization of long period atmospheric waves from ground displacements. Journal of Geophysical Research: Planets125, e2019JE006278. doi: 10.1029/2019JE006278, oatao-26990
  • Giardini, D., P. Lognonné, W. Banerdt, W. Pike, U. Christensen, S. Ceylan, J. Clinton, M. van Driel, S. Stähler, M. Böse, R. Garcia, A. Khan, M. Panning, C. Perrin, D. Banfield, E. Beucler, C. Charalambous, F. Euchner, A. Horleston, A. Jacob, T. Kawamura, S. Kedar, G. Mainsant, J.-R. Scholz, S. Smrekar, A. Spiga, C. Agard, D. Antonangeli, S. Barkaoui, E. Barrett, P. Combes, V. Conejero, I. Daubar, M. Drilleau, C. Ferrier, T. Gabsi, T. Gudkova, K. J. Hurst, F. Karakostas, S. King, M. Knapmeyer, B. Knapmeyer-Endrun, R. Llorca-Cejudo, A. Lucas, L. Luno, L. Margerin, J. McClean, D. Mimoun, N. Murdoch, F. Nimmo, M. Nonon, C. Pardo, A. Rivoldini, J. Rodriguez-Manfredi, H. Samuel, M. Schimmel, A. Stott, E. Stutzmann, N. Teanby, T. Warren, R. Weber, M. Wieczorek, and C. Yana (2020), The Seismicity of Mars, Nature Geoscience, 13, 205-212, doi: 10.1038/s41561-020-0539-8, hal-02526752v1.
  • Golombek, M., N. Warner, J. Grant, E. Hauber, V. Ansan, C. Weitz, N. Williams, C. Charalambous, S. Wilson, A. DeMott, M. Kopp, H. Lethcoe-Wilson, L. Berger, R. Hausmann, E. Marteau, C. Vrettos, Al. Trussell, W. Folkner, S. Le Maistre, N. Mueller, M. Grott, T. Spohn, S. Piqueux, E. Millour, F. Forget, I. Daubar, N. Murdoch, P. Lognonné, C. Perrin, S. Rodriguez, W. Pike, T. Parker, J. Maki, H. Abarca, R.  Deen, J Hall, P. Andres, N. Ruoff, F. Calef, S. Smrekar, M. Baker, M. Banks, A. Spiga, D. Banfield, J. Garvin, C. Newman, and W Banerdt (2020), Geology of the InSight Landing Site on Mars, Nature communication, 11,1014, doi: 10.1038/s41467-020-14679-1,   hal-02563276v1.
  • Johnson, C., A. Mittelholz,B. Langlais, C. Russell, V. Ansan, D. Banfield, P. Chi, M. Fillingim, F. Forget, H. Fuqua Haviland, M. Golombek,S. Joy, P. LognonnéX. Liu, C. Michaut, Lu Pan, C. Quantin-Nataf, A. Spiga, S. Stanley, S. Thorne, M. Wieczorek, Y. Yu, S. E. Smrekar, and W. Banerdt (2020), Crustal and time-varying magnetic fields at the InSight landing site on Mars, Nature Geoscience, 13,199-204, doi: 10.1038/s41561-020-0537-x, insu-02544796v1.
  • Kenda, B., Drilleau, M., Garcia, R. F., Kawamura, T., Murdoch, N., Compaire, N., P. Lognonné A. Spiga R. Widmer‐Schnidrig P. Delage V. Ansan C. Vrettos S. Rodriguez W. B. Banerdt D. Banfield D. Antonangeli U. Christensen D. Mimoun A. Mocquet, T. Spohn (2020). Subsurface structure at the InSight landing site from compliance measurements by seismic and meteorological experiments. Journal of Geophysical Research: Planets125, e2020JE006387. doi: 10.1029/2020JE006387, hal-02976014v1
  • Knapmeyer-Endrun, B., & Kawamura, T. (2020), NASA’s InSight mission on Mars—first glimpses of the planet’s interior from seismology. Nature Communications, 11, 1451, doi: 10.1038/s41467-020-15251-7, insu-02533996v1
  • Lognonné, P., W.B. Banerdt, W.T.Pike, D.Giardini, U.Christensen, R.F.Garcia,T.Kawamura, S.Kedar, B. Knapmeyer-Endrun, L.Margerin, F.Nimmo, M.Panning, B.Tauzin, J.-R.Scholz, D.Antonangeli, S.Barkaoui, E.Beucler, F. Bissig, N. Brinkman, M. Calvet, S,Ceylan, C.Charalambous, P.Davis, M. van Driel, M.Drilleau, L.Fayon, R. Joshi, B.Kenda, A. Khan, M. Knapmeyer, V. Lekic, J.McClean, D.Mimoun, N.Murdoch, L. Pan, C.Perrin, B.Pinot, L.Pou, S. Menina, S.Rodriguez, C. Schmelzbach, N. Schmerr, D. Sollberger, A.Spiga, S.Stähler, A.Stott, E.Stutzmann, S.Tharimena, R.Widmer-Schnidrig, F. Andersson, V.Ansan, C. Beghein, M.Böse),E. Bozdag, J. Clinton, I.Daubar, P.Delage, N. Fuji, M. Golombek, M. Grott, A. Horleston, K. Hurst, J. Irving, A. Jacob, J. Knollenberg, S.Krasner, C. Krause, R. Lorenz, C. Michaut, B.Myhill, T. Nissen-Meyer, J. ten Pierick, A.-C..Plesa, C.Quantin-Nataf, J.Robertsson, L. Rochas, M.Schimmel, S.Smrekar, T.Spohn, N.Teanby, J.Tromp, J.Vallade, N.Verdier, C.Vrettos, R. Weber, D.Banfield, E. Barrett, M.Bierwirth, S.Calcutt, N.Compaire, C.Johnson, D.Mance, F. Euchner, L.Kerjean, G.Mainsant, A.Mocquet, J.Antonio Rodriguez Manfredi, G.Pont, P.Laudet, T.Nebut, S. de Raucourt, O. Robert, C.T. Russell, A.Sylvestre-Baron, S.Tillier, T.Warren, M.Wieczorek, C.Yana, P.Zweifel (2020), Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data, Nature geoscience, 13, 213-220, doi: 10.1038/s41561-020-0536-y , hal-02526740v1.
  • Martire, L., Garcia, R. F., Rolland, L., Spiga, A., Lognonné, P. H., Banfield, D, Banerdt, W.B., Martin, R. (2020). Martian infrasound: Numerical modeling and analysis of insight's data. Journal of Geophysical Research: Planets125, e2020JE006376. doi: 10.1029/2020JE006376, hal-02971385v1
  • Pan, L., Quantin, C., Tauzin, B., Michaut, C., Golombek, M. P., Lognonné, P., Grindrod, P., Langlais, B., Gudkova, T., Stepanova, I., Rodriguez, S., & Lucas, A. (2020). Crust heterogeneities and structure at the dichotomy boundary in western Elysium Planitia and implications for InSight lander, Icarus, 338, 113511, doi: 10.1016/j.icarus.2019.113511, hal-02346218v1
  • Panning, M. P., Pike, W. T., Lognonné, P., Banerdt, W. B., Murdoch, N., Banfield, D., C. Charalambous S. Kedar R. D. Lorenz A. G. Marusiak J. B. McClean C. Nunn S. C. Stähler A. E. Stott T. Warren (2020). On‐deck seismology: Lessons from InSight for future planetary seismology. Journal of Geophysical Research: Planets125, e2019JE006353. doi: 10.1029/2019JE006353, arXiv
  • Perrin, C., Rodriguez, S., Jacob, A., Lucas, A., Spiga, A., Murdoch, N., R. Lorenz I. J. Daubar L. Pan T. Kawamura P. Lognonné D. Banfield M. E. Banks R. F. Garcia C. E. Newman L. Ohja R. Widmer-Schnidrig A. S. McEwen W. B. Banerdt (2020) Monitoring of dust devil tracks around the InSight landing site, Mars, and comparison with in situ atmospheric data. Geophysical Research Letters47, e2020GL087234. doi: 10.1029/2020GL087234, hal-02963452v1.
  • Scholz, J.-R., Widmer-Schnidrig, R., Davis, P., Lognonné, P., Pinot, B., Garcia, R. F., Nimmo, F., Hurst, K., Barkaoui, S., de Raucourt, S., Pou, L., Pinot, B., Compaire, N., Mainsant, G., Cuvier, A., Beucler, E., Bonnin, M., Joshi, R., Stutzmann, E., Schimmel, M., Horleston, A., Böse, M., Ceylan, S., Clinton, J., van Driel, M., Kawamura, T., Khan, A., Stähler, S. C., Giardini, D., Charalambous, C., Stott, A. E., Pike, W. T., Christensen, U., & Banerdt, W. B. (2020), Detection, Analysis, and Removal of Glitches From InSight's Seismic Data From Mars, Earth and Space Science7, e2020EA001317, doi: 10.1029/2020EA001317 (OPEN ACCESS)
  • Sollberger, D., Schmelzbach, C., Andersson, F., Robertsson, J. O. A., Kedar, S., Banerdt, W. B., Brinkman, N., Clinton, J., van Driel, M., Garcia, R., Giardini, D., Grott, M., Haag, T., Hudson, T. L., Lognonné, P., ten Pierick, J., Pike, W., Spohn, T., Stähler, S., & Zweifel, P. (2020). A reconstruction of temporally aliased seismic signals recorded by the InSight Mars lander, Submitted to Earth and Space Science., preprint ESSOAR
  • Spiga, A., Murdoch, N., Lorenz, R., Forget, F., Newman, C., Rodriguez, S. , Pla-Garcia, J.,  Viúdez-Moreiras, D. , Banfield, D., Perrin, C., Mueller, N. T., Lemmon, M., Millour, E, Banerdt, W. B. (2020), A study of daytime convective vortices and turbulence in the martian Planetary Boundary Layer based on half-a-year of InSight atmospheric measurements and Large-Eddy Simulations, Journal of Geophysical Research, doi: 10.1029/2020JE006511, https://arxiv.org/abs/2005.01134
  • Stähler, S. C., Widmer‐Schnidrig, R., Scholz, J.‐R., van Driel, M., Mittelholz, A., Hurst, K., C. L. Johnson M. T. Lemmon R. D. Lorenz P. Lognonné N. T. Müller L. Pou A. Spiga D. Banfield S. Ceylan C. Charalambous J. Clinton D. Giardini F. Nimmo M. Panning W. Zürn W. B. Banerdt (2020). Geophysical observations of Phobos transits by InSight. Geophysical Research Letters47, e2020GL089099, doi: 10.1029/2020GL089099, preprint ESSOAR
  • Wójcicka, N., Collins, G. S., Bastow, I. D., Teanby, N. A., Miljković, K., Rajšić, A., I. Daubar P. Lognonné (2020). The seismic moment and seismic efficiency of small impacts on Mars. Journal of Geophysical Research: Planets125, e2020JE006540. doi: 10.1029/2020JE006540

2019

  • Banfield, D., Rodriguez-Manfredi, J.A., Russell, C.T., K. M. Rowe, D. Leneman, H. R. Lai, P. R. Cruce, J. D. Means, C. L. Johnson, A. Mittelholz, S. P. Joy, P. J. ChiI, G. Mikellides, S. Carpenter, S. Navarro, E. Sebastian, J. Gomez-Elvira, J. Torres, L. Mora, V. Peinado, A. Lepinette, The TWINS Team, K. Hurst, P. Lognonné, S. E. Smrekar, W. B. Banerdt (2019), InSight Auxiliary Payload Sensor Suite (APSS), Space Science Reviews, 215, 4,  doi: 1007/s11214-018-0570-x.
  • Bagheri, A., Khan, A., Al-Attar, D., Crawford, O., & Giardini, D. (2019). Tidal response of Mars constrained from laboratory‐based viscoelastic dissipation models and geophysical data. Journal of Geophysical Research-Planets, 124, 2703–2727, doi: 10.1029/2019JE006015, Open Access Un. Cambridge
  • Knapmeyer, M., B. Knapmeyer‐Endrun, A.‐C. Plesa, M. Böse, T. Kawamura, J. F. Clinton, M. P. Golombek, S. Kedar, S. Stähler, J. Stevanovic, C. Perrin, P. Lognonné, N. A. Teanby, R. Weber (2019), Estimation of the Seismic Moment Rate from an Incomplete Seismicity Catalog, in the Context of the InSight Mission to Mars, Bulletin of the Seismological Society of America, 109, 1125–1147. doi: 10.1785/0120180258, insu-02544967v1.
  • Liu, H., Pike, W. T., Charalambous, C., & Stott, A. E. (2019). Passive method for reducing temperature sensitivity of a microelectromechanical seismic accelerometer for Marsquake monitoring below 1 Nano-g. Physical Review Applied, 12, 064057, doi: 10.1103/PhysRevApplied.12.064057.
  • Lognonné, P., Banerdt, W. B., Giardini, D., Pike, W. T., Christensen, U., Laudet, P., de Raucourt, S., Zweifel, P., Calcutt, S., Bierwirth, M., Hurst, K. J., IJpelaan, F., Umland, J. W., Llorca-Cejudo, R., Larson, S. A., Garcia, R., Kedar, S., Knapmeyer-Endrun, B., Mimoun, D., Mocquet, A., Panning, M. P., Weber, R. C., Sylvestre-Baron, A., Pont, G., Verdier, N., Kerjean, L., Facto, L. J., Gharakanian, V., Feldman, J. E., Hoffman, T. L., Klein, D. B., Klein, K. J., Onufer, N. P., Paredes Garcia, J., Petkov, M. P., Willis, J. R., Smrekar, S. E., Drilleau, M., Gabsi, T., Nebut, T., Robert, O., Tillier, S., Moreau, C., Parise, M., Aveni, G., Bencharef, S., Bennour, Y., Camus, T., Dandonneau, P.-A., Desfoux, C., Lecomte, B., Pot, O., Revuz, P., Mance, D., ten Pierick, J., Bowles, N. E., Charalambous, C., Delahunty, A., Hurley, J., Irshad, R., Liu, H., Mukherjee, A., Standley, I., Stott, A. E., Temple, J., Warren, T., Eberhardt, M., Kramer, A., Kuhne, W., Miettinen, E.-P., Monecke, M., Aicardi, C., André, M., Baroukh, J., Borrien. A., Bouisset, A., Boutte, P., Brethome, K., Brysbaert, C., Carlier, T., Deleuze, M., Desmarres, J.-M., Dilhan, D., Doucet, C., Faye, D., Faye-Refalo, N., Gonzalez, R., Imbert, C., Larigauderie, C., Locatelli, E., Luno, L., Meyer, J.-R., Mialhe, F., Mouret, J.-M., Nonon, M., Panh, Y., Paillet, A., Pasquier, P., Perez, G., Perez, R., Perrin, L., Pouilloux, B., Rosak, A., Savin De Larclause, I., Sicre, J., Sodki, M., Toulemont, N., Vella, B., Yana, C., Alibay, F., Avalos, O. M., Balzer, M. A., Bhandari, P., Blanco, E., Bone, B. D., Bousman, J. C., Bruneau, P., Calef, F. J., Calvet, R. J., D’Agostino, S. A., De Los Santos, G. A., Deen, R. G., Denise, R. W., Ervin, J., Ferraro, N. W., Gengl, H. E., Grinblat, J. F., Hernandez, D., Hetzel, M. M., Johnson, M. E., Khachikyan, L., Lin, J. Y., Madzunkov, S. M., Marshall, S. L., Mikellides, I. G., Miller, E. A., Raff, W., Singer, J. E., Sunday, C. M., Villalvazo, J. F., Wallace, M. C., Banfield, D., Rodriguez-Manfredi, J. A., Russell, C. T., Trebi-Ollennu, A., Maki, J. N., Beucler, E., Böse, M., Bonjour, C., Berenguer, J.-L., Ceylan, S., Clinton, J., Conajero, V., Daubar, I., Dehant, V., Delage, P., Euchner, F., Estève, I., Fayon, L., Ferraioli, L., Johnson, C., Gagnepain-Beyneix, J., Golombek, M. P., Khan, A., Kawamura, T., Kenda, B., Labrot, P., Murdoch, N., Pardo, C., Perrin, C., Pou, L., Sauron, A., Savoie, D., Stahler, S., Stutzman, E., Teanby, N. A., Tromp, J., van Driel, M., Wieczorek, M., Widmer- Schnidrig, R., & Wookey, J. (2019), SEIS: Insight’s Seismic Experiment for Internal Structure of Mars, Space Science Reviews, 215, 12, doi: 10.1007/s11214-018-0574-6 , hal-02188213v1.
  • Nishikawa, Y., Lognonné, P., Kawamura, T. T., Spiga, A., Stutzman, E., Schimmel, M., Bertrand, T., Forget, F., & Kurita, K (2019), Mars’ Background Free Oscillations, Space Science Reviews, 215, 13, doi: 10.1007/s11214-019-0579-9.
  • Pou, L., Mimoun, D., Lognonné, P. Garcia, R. F., Karatekin, O., Nonon-Latapie, M., & Llorca- Cejudo, R. (2019), High Precision SEIS Calibration for the InSight Mission and Its Applications, Space Science Reviews, 215, 6, doi: 10.1007/s11214-018-0561-y, oata-21689
  • Samuel, H. P. Lognonné, M. Panning and V. Lainey (2019), The rheology and thermal history of Mars revealed by the orbital evolution of Phobos, Nature, 569, 523–527, doi: 10.1038/s41586-019-1202-7, hal-02380378v1.
  • Savoie, D., Richard, A., Goutaudier, M., N. P. Onufer, M. C. Wallace, D. Mimoun, K. Hurst, N. Verdier, P. Lognonné, J. N. Maki, B. Banerdt (2019), Determining True North on Mars by Using a Sundial on InSight, Space Science Reviews, 215, 2, doi: 10.1007/s11214-018-0568-4, hal-01977462v1.
  • Schmerr, N. C., Banks, M., & Daubar, I. (2019). The seismic signatures of recently formed impact craters on Mars. Journal of Geophysical Research-Planets, 124, 3063– 3081, doi: 10.1029/2019JE006044, NASA Public Access
  • Smrekar, S. E., Lognonné, P., Spohn, T., Banerdt, W. B., Breuer, D., Christensen, U., Dehant, V., Drilleau, M., Folkner, W., Fuji, N., Garcia, R., Giardini, D., Golombek, M. P., Grott, M., Gudkova, T., Johnson, C., Khan, A., Langlais, B., Mittelholz, A., Mocquet, A., Myhill, R., Panning, M. P., Perrin, C., Pike, W. T., Plesa, A.-C., Rivoldini, A., Samuel, H., Stähler, S. C., van Driel, M., Van Hoolst, T., Verhoeven, O., Weber, R., Wieczorek, M (2019), Pre-mission InSights on the Interior of Mars, Space Science Reviews, 215, 3, doi: 10.1007/s11214-018-0563-9, hal-01990798v1.
  • van Driel, M., S. Ceylan, J. F. Clinton, D. Giardini, H. Alemany, A. Allam, D. Ambrois, J. Balestra, B. Banerdt, D. Becker, M. Böse, M. S. Boxberg, N. Brinkman, T. Casademont, J. Chèze, I. Daubar, A. Deschamps, F. Dethof, M. Ditz, M. Drilleau, D. Essing, F. Euchner, B. Fernando, R. Garcia, T. Garth, H. Godwin, M. P. Golombek, K. Grunert, C. Hadziioannou, C. Haindl, C. Hammer, I. Hochfeld, K. Hosseini, H. Hu, S. Kedar, B. Kenda, A. Khan, T. Kilchling, B. Knapmeyer‐Endrun, A. Lamert, J. Li, P. Lognonné, S. Mader, L. Marten, F. Mehrkens, D. Mercerat, D. Mimoun, T. Möller, N. Murdoch, P. Neumann, R. Neurath, M. Paffrath, M. P. Panning, F. Peix, L. Perrin, L. Rolland, M. Schimmel, C. Schröer, A. Spiga, S. C. Stähler, R. Steinmann, E. Stutzmann, A. Szenicer, N. Trumpik, M. Tsekhmistrenko, C. Twardzik, R. Weber, P. Werdenbach‐Jarklowski, S. Zhang, Y. Zheng (2019), Preparing for InSight: Evaluation of the Blind Test for Martian Seismicity. Seismological Research Letters, 90, 1518–1534, doi: 10.1785/0220180379 , hal-02365912v1.

2018

  • Bissig, F., Khan, A., van Driel, M., S.C.Stähler, D.Giardini, M.Panning, M.Drilleau, P.Lognonné, T.V.Gudkova, V.N.Zharkov, A.C.Plesa, W.B.Banerdt (2018) On the detectavility and use of normal modes for determining interior structure of Mars, Space Science Reviews, 214, 114. doi: 10.1007/s11214-018-0547-9, insu-02546649v1.
  • M. Böse, D. Giardini, S.Stähler, S.Ceylan, J.Clinton, M. van Driel Martin, A. Khan, F. Euchner, P. Lognonné, and W.B. Banerdt (2018) Magnitude Scales for Marsquakes, Magnitude Scales for Marsquakes, Bulletin of the Seismological Society of America, 108, 2764–2777, doi: 10.1785/0120180037, insu-02546686v1.
  • Clinton, J., Giardini, D., Böse, M., S. Ceylan, M. van Driel, F. Euchner, R. F. Garcia, S. Kedar, A. Khan, S. C. Stähler, B. Banerdt, P. Lognonné, E. Beucler, I. Daubar, M. Drilleau, M. Golombek, T. Kawamura, M. Knapmeyer, B. Knapmeyer-Endrun, D. Mimoun, A. Mocquet, M. Panning, C. Perrin, N. A. Teanby (2018), The Marsquake Service: Securing Daily Analysis of SEIS Data and Building the Martian Seismicity Catalogue for InSight, Space Science Reviews, 214, 133, doi: 10.1007/s11214-018-0567-5, hal-01991048v1.
  • Daubar, I., Lognonné, P., Teanby, N. A., Miljkovic, K., Stevanović, J., Vaubaillon, J., Kenda, B., Kawamura, T., Clinton, J., Lucas, A., Drilleau, M., Yana, C., Collins, G. S., Banfield, D., Golombek, M. P., Kedar, S., Schmerr, N., Garcia, R., Rodriguez, S., Gudkova, T., May, S., Banks, M., Maki, J., Sansom, E., Karakostas, F., Panning, M. P., Fuji, N., Wookey, J., van Driel, M., Lemmon, M., Ansan, V., Böse, M., Stähler, S., Kanamori, H., Richardson, J., Smrekar, S. E., & W.B.Banerdt (2018), Impact-Seismic Investigations of the InSight Mission, Space Science Reviews, 214, 132, doi: 10.1007/s11214-018-0562-x, hal-01990992v1.
  • L.Fayon, B.Knapmeyer-Endrun, P. Lognonné, M.Bierwirth, A.Kramer, P.Delage, F.Karakostas, S.Kedar, N.Murdoch, R.Garcia, N.Verdier, S.Tillier, W.T. Pike, K.Hurst, C.Schmelzbach, W.B. Banerdt (2018), A numerical model of the SEIS leveling system transfer matrix and resonances: application to SEIS rotational seismology and dynamic ground interaction, Space Science Reviews, 214, 119, doi:10.1007/s11214-018-0555-9, hal-01990999v1.
  • Golombek, M., Grott M., Kargl G., Andrade J., Marshall J., Warner N., Teanby N. A., Ansan V., Hauber E., Voigt J., Lichtenheldt, R., Knapmeyer-Endrun, B., Daubar, I. J., Kipp, D., Muller,N., Lognonné, P., Schmelzbach, C., Banfield, D., Trebi-Ollennu, T., Maki, J., Kedar, S., Mimoun, D., Murdoch, N., Piqueux, S., Delage, P., Pike, W. T. , Charalambous, C., Lorenz, R., Fayon, L., Lucas, A., Rodriguez, S., Morgan, P., Spiga, A., Panning, M.,Spohn, T., Smrekar, S., Gudkova, T., Garcia, R., Giardini, D., Christensen, U., Nicollier, T., Sollberger, D.,  Robertsson,J., Ali, K., Kenda, B. & Banerdt, W.B. (2018) Geology and Physical Properties Investigations by the InSight Lander, Space Science Reviews, 214, 84, doi: 10.1007/s11214-018-0512-7, hal-01895616v1
  • Hurley, J., Murdoch, N., Teanby, N. A., Bowles, N., Warren, T., Calcutt, S. B., Mimoun, D., & Pike, W. T. (2018). Isolation of seismic signal from InSight/SEIS-SP microseismometer measurements. Space Science Reviews, 214, 95, doi: 10.1007/s11214-018-0523-4, hal-01914196v1.
  • Khan, A., Liebske, C., Rozel, A., Rivoldini, A., Connolly, J. A. D., Plesa, A.-C., Giardini, D., J. Geophys. Res. (2018), A geophysical perspective on the bulk composition of Mars, doi:10.1002/2017JE005371 (OPEN ACCESS)
  • Karakostas, F., Rakoto, V., Lognonné, P. Larmat, C., Daubar I. & Miljković, K. (2018), Inversion of Meteor Rayleigh Waves on Earth and Modeling of Air Coupled Rayleigh Waves on Mars, Space Science Reviews, 214, 127, doi: 10.1007/s11214-018-0566-6, insu-02545014v1.
  • B. Knapmeyer-Endrun, N. Murdoch, B. Kenda, M.P. Golombek, M. Knapmeyer, L. Witte, N. Verdier, S. Kedar, P. Lognonné and W.B. Banerdt (2018), Influence of Body Waves, Instrumentation Resonances, and Prior Assumptions on Rayleigh Wave Ellipticity Inversion for Shallow Structure at the InSight Landing Site, Space Science Review, 214,94, doi: 10.1007/s11214-018-0529-y, hal-01897669v1.
  • Knapmeyer-Endrun, B., Ceylan, S., & van Driel, M. (2018). Crustal S-velocity from apparent incidence angles: A case study in preparation for InSight. Space Science Reviews, 214, 83, doi: 10.1007/s11214-018-0510-9.
  • Morgan, P., Grott, M., Knapmeyer-Endrun, B., M. Golombek, P.Delage, P.Lognonné, S.Piqueux, I.Daubar, N.Murdoch, C.Charalambous, W.T. Pike, N.Müller, A.Hagermann, M.Siegler, R.Lichtenheldt, N.Teanby, S.Kedar (2018), A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site, Space Science Reviews, 214, 104, doi: 10.1007/s11214-018-0537-y, hal-01901608v1.
  • Murdoch, N., Alazard, D., Knapmeyer-Endrun, B., Teanby, N. A., & Myhill, R. (2018). Flexible mode modelling of the InSight lander and consequences for the SEIS instrument. Space Science Reviews, 214, 8, doi: 10.1007/s11214-018-0553-y, hal-01915826v1.
  • Myhill, R., Teanby, N. A., Wookey, J., & Murdoch, N. (2018). Near-field seismic propagation and coupling through Mars regolith: Implications for the InSight mission. Space Science Reviews, 214, 5, doi: 10.1007/s11214-018-0514-5, hal-01900704v1.
  • Petkov, M.P., S. M. Jones, G. E. Voecks, K. J. Hurst, O. Grosjean, D. Faye, G. Rioland, C. M. Sunday, E. M. Bradford, W. N. Warner, J. M. Mennella, N. W. Ferraro, M. Gallegos, D. M. Soules, P. Lognonné, W. B. Banerdt, J. W. Umland (2018), Development of the Primary Sorption Pump for the SEIS Seismometer of the InSight Mission to Mars, Space Science Reviews , 214, 112, doi: 10.1007/s11214-018-0548-8, insu-02545071v1.
  • Plesa, A.-C., Knapmeyer M., Golombek M. P., Breuer D., Grott M., Kawamura T., Lognonné P., Tosi N., and Weber R. C. (2018), Present-day Mars' Seismicity Predicted from 3-D Thermal Evolution Models of Interior Dynamics, Geophysical Research Letters, 45, 2580–2589, doi: 10.1002/2017GL076124, hal-02105479v1.
  • Schimmel, M., Stutzmann, E., & Ventosa, S. (2018). Low-frequency ambient noise autocorrelations: Waveforms and normal modes, Seismological Research Letters, 89, 1488–1496. 10.1785/0220180027.
  • Spiga, A., D Banfield, N.Teanby, F.Forget, A.Lucas, B. Kenda, J.A. Rodriguez-Manfredi, R. Widmer-Schnidrig, N. Murdoch, M.T.Lemmon, R. F. Garcia, L. Martire, O. Karatekin, S. Le Maistre, B. Van Hove, V.Dehant, P. Lognonné, Mueller, N., Lorenz, R., Mimoun, D., Rodriguez, S., Beucler, E., Daubar, I.,. Golombek, M.P. Bertrand, T., Nishikawa, Y., Millour, E., Rolland, L., Brissaud, Q., Kawamura, T., Mocquet, A., Martin, R., Clinton, J., Stutzmann, E., Spohn, T., Smrekar, S. & Banerdt, W.B. (2018), Atmospheric Science with InSight, Space Science Review, 214, 109,  10.1007/s11214-018-0543-0, hal-01902145v1.
  • Stott, A., Charalambous, C., Warren, T., & Pike, W. T. (2018). Full-band signal extraction from sensors in extreme environments: The NASA InSight microseismometer, IEEE Sensors Journal, 8, 22, doi: 10.1109/JSEN.2018.2871342.

2017

  • M.Böse, J.F.Clinton, S.Ceylan, F.Euchner, M. van Driel, A.Khan, D.Giardini, P.Lognonné, W.B.Banerdt (2017), Probabilistic Framework for Single-Station Location of Seismicity on Earth and Mars, Physics of the Earth and Planetary Interiors, 262, 48-65, doi: 10.1016/j.pepi.2016.11.003, insu-02546686v1.
  • Bozdag, E., Ruan, Y., Metthez, N., Khan, A., Leng, K., van Driel, M., Wieczorek, M., Rivoldini, A., Larmat, C., Giardini, D., Tromp, J., Lognonné, P. & Banerdt, B. W. (2017). Simulations of seismic wave propagation on Mars, Space Science Reviews, 211,571-594, doi: 10.1007/s11214-017-0350-z, hal-01734543v1.
  • Ceylan, S., van Driel, M., Euchner, F., Khan, A., Clinton, J., Krischer, L., Böse, M., Stähler, S., & Giardini, D. (2017). From initial models of seismicity, structure and noise to synthetic seismograms for Mars. Space Science Reviews , 211, 595–610, doi: 10.1007/s11214-017-0380-6
  • Clinton, J.F., D. Giardini, P. Lognonné, B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga (2017), Preparing for InSight: An Invitation to Participate in a Blind Test for Martian Seismicity, Seismological Research Letters, 88, 1290–1302, doi: 10.1785/0220170094, hal-01655047v1.
  • Delage, P., Karakostas, F., Dhemaied, A., Belmokhtar, M., Lognonné P., Golombek, M., De Laure, E., Hurst, K., Dupla, J.C., Keddar, S., Cui, Y.J., Banerdt, W.B. (2017), An Investigation of the Mechanical Properties of Some Martian Regolith Simulants with Respect to the Surface Properties at the InSight Mission Landing Site, Space Science Reviews, 211, 191–213, doi: 10.1007/s11214-017-0398-9, insu-02552601v1.
  • Garcia, R.F., Brissaud, Q., Rolland, L., Martin, R., Komatitsch, D., Spiga, A., Lognonné, P., Banerdt, W.B. (2017), Finite-Difference Modeling of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Application to Infrasounds Emitted by Meteor Impacts, Space Science Reviews, 211, 547-570, doi:10.1007/s11214-016-0324-6, hal-01447014v1.
  • Golombek, M., D. Kipp, N.Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N.Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt (2017) Selection of the InSight Landing Site, Space Science Reviews, 211, 5-95, doi:10.1007/s11214-016-0321-9.
  • Kedar, S., Andrade, J., Banerdt, B., P. Delage, M.Golombek, M.Grott, T.Hudson, A.Kiely, M.Knapmeyer, B.Knapmeyer-Endrun, C.Krause, T.Kawamura, P.Lognonné, T.Pike, Y.Ruan, T.Spohn, N.TeanbyJ, J. Tromp, J. Wookey (2017), Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator, Space Science Reviews, 211, 315-337, doi: 10.1007/s11214-017-0391-3 , hal-01729585v1.
  • Kenda,B., P.Lognonné, A.Spiga, T.Kawamura, S.Kedar, W. Bruce Banerdt, R.Lorenz (2017), Modeling of ground deformation and shallow surface waves generated by Martian dust, devils and perspectives for near-surface structure inversion, Space Science Reviews, 211, 501-524, doi: 10.1007/s11214-017-0378-0, insu-02551135v1.
  • Knapmeyer-Endrun, B., Golombek, M. P., & Ohrnberger, M. (2017). Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars. Space Science Reviews, 211, 339–382. doi: 10.1007/s11214-016-0300-1.
  • Lorenz, R. D., Nakamura, Y., & Murphy, J. R. (2017), Viking-2 seismometer measurements on Mars: PDS data archive and meteorological applications, Earth and Space Science, 4, 681–688. doi: 10.1002/2017ea000306.
  • Mimoun, D., N. Murdoch, Lognonné, P., Hurst, K. Pike, W.T., Hurley, J., Nébut, Banerdt, W.B. and SEIS Team (2017) The Noise Model of the SEIS Seismometer of the InSight Mission to Mars, Space Science Reviews, 211, 383–428, doi: 10.1007/s11214-017-0409-x, oata-18497.
  • Murdoch,N., D.Mimoun, R. F. Garcia, W.Rapin, T.Kawamura, P.Lognonné, D.Banfield, W.B. Banerdt (2017) Evaluating the Wind-Induced Mechanical Noise on the InSight Seismometers, Space Science Reviews, 211, 429-455, doi:10.1007/s11214-016-0311-y, hal-01136385v1.
  • Murdoch,N., B.Kenda, T.Kawamura, A.Spiga, P.Lognonné, D.Mimoun, W.B. Banerdt (2017) Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission, Space Science Reviews, 211,457-483, doi: 10.1007/s11214-017-0343-y, hal-01540078v1.
  • Panning, M.P., P.Lognonné, W. B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A.Mocquet, N.A. Teanby, J.Tromp, R. Weber, E. Beucler, J.F.Blanchette-Guertin, E.Bozdag, M. Drilleau, T.Gudkova, S. Hempel, A.Khan, V. Leki, N.Murdoch, A.C. Plesa, A.Rivoldini, N.Schmerr, Y.Ruan, 0.Verhoeven, C.Gao, U.Christensen, J.Clinton, V.Dehant, D.Giardini, D.Mimoun, W. T Pike, S. Smrekar, M. Wieczorek, M.Knapmeyer, J.Wookey (2017), Planned products of the Mars Structure Service for the InSight mission, Mars, Space Science Reviews, 211, 611–650, doi: 10.1007/s11214-016-0317-5, hal-01534998v1.
  • Stevanović, J., Teanby, N. A., Wookey, J., Selby, N., Daubar, I. J., Vaubaillon, J., & Garcia, R. (2017). Bolide airbursts as a seismic source for the 2018 Mars InSight mission. Space Science Reviews, 211, 525–545, doi: 10.1007/s11214-016-0327-3, hal-02178908v1.
  • Teanby, N. A., Stevanović, J., Wookey, J., Murdoch, N., Hurley, J., Myhill, R., Bowles, N.E., Calcutt S.B. & Pike, W.T. (2017). Seismic coupling of short-period wind noise through Mars regolith for NASAs InSight lander. Space Science Reviews, 211, 485–500. doi: 10.1007/s11214-016-0310-z, oata17290, University of Bristol Open Access

2016

  • A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J.Yan, J.Clinton, F.Euchner, P.Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt (2016), Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms, Physics of the Earth and Planetary Interiors, 258, 28-42, doi: 10.1016/j.pepi.2016.05.017.
  • Lognonné, P., Karakostas, F.,  Rolland, L, Y.Nishikawa (2016),  Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: From Earth observation to Mars and Venus perspectives, Journal of the Acoustical Society of America, 140, 1447-1468, doi: 10.1121/1.4960788, hal-01401426v1.

2015

  • Taylor, J., Teanby, N. A., & Wookey, J. (2013). Estimates of seismic activity in the Cerberus Fossae region of Mars. Journal of Geophysical Research-Planets, 118, 2570–2581. doi: 10.1002/2013je004469, University of Bristol - Open Access
  • Lorenz, R. D., Kedar, S. Murdoch, N.,Lognonné, P., Kawamura, T.; Mimoun, D., Banerdt, W.B. (2015), Seismometer Detection of Dust Devil Vortices by Ground Tilt, Bulletin of the Seismological Society of America, 105, 3015-3023, doi: 10.1785/0120150133, insu-02555145v1.
  • Panning, M.P, E. Beucler, M. Drilleau, Mocquet, Lognonné, P, Banerdt, W.B. (2015), Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars, Icarus, 230-242, 248, doi: 10.1016/j.icarus.2014.10.035, insu-02557342v1.
  • Teanby, N. A. (2015). Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short- period seismometer, Icarus, 256, 49–62, doi: 10.1016/j.icarus.2015.04.012, University of Bristol - Open Access
  • Zheng, Y. C., Nimmo, F., & Lay, T. (2015). Seismological implications of a lithospheric low seismic velocity zone in Mars. Physics of the Earth and Planetary Interiors, 240, 132–141, doi: 10.1016/j.pepi.2014.10.004.

Data from the article: A Comodulation Analysis of Atmospheric Energy Injection into the Ground Motion at InSight, Mars.

 

Resource type
Dataset:DataPaper
Creator
Charalambous, Constantinos
Publisher
Université de Paris, Institut de physique du globe de Paris (IPGP)
Publication Year
2020
Abstract

This repository contains processed data and sample data sets of the article: Charalambous, C., et al. "A Comodulation Analysis of Atmospheric Energy Injection into the Ground Motion at InSight, Mars" (2020) J. Geophys. Res. doi: 10.1002 / essoar.10503206.1. The code to run the sample data sets is available at https://github.com/ConstantinosCharalambous/comodulation, which provides simple scripts to help the reader familiarize themselves with the comodulation framework as demonstrated in the paper and also allow for further experimentation. Raw data are available at doi: 10.18715 / SEIS.INSIGHT.XB_2016

Data and Citation
doi:10.18715/ipgp.2020.Khw87roo

Data from the article: The polarization of ambient noise on Mars

 

Resource type
DataPaper:Dataset
Creator
Eléonore Stutzmann
Publisher
Université de Paris, Institut de physique du globe de Paris, CNRS
Publication Year
2020
Abstract

This dataset contains the processed data of the article: Stutzmann, Schimmel, Lognonné et al. The polarization of ambient noise on Mars. (2020) J. Geophys. Res. doi:10.1002/essoar.10503376.1. Raw data are available at  doi:10.18715/SEIS.INSIGHT.XB_2016

Data and Citation
doi:10.18715/IPGP.2020.kgwc9ep5

Data from Modelling to resolve whether SEIS has detected the formation of a 1.5m diameter crater

Resource type
Dataset
Creators
Carène Larmat
Keisuke Onodera
Ross Maguire
Philippe Lognonné
Publisher
Institut de Physique du Globe de Paris (IPGP)
Publication Year
2020
Abstract
A new 1.5m diameter crater was discovered on Context camera Images of Mars surface. This crater is relatively close to the NASA InSight lander, at a distance of approximately 40km.
Three seismic events were recorded by SEIS, the seismometer of InSight, between the last image without the crater and the second image with the crater. Seismic analysis and modelling were performed in order to test if any of these events is indeed the record of the formation of the crater.
This dataset contains the supporting modelling of this study. It consists of: (1) the full-waveform modelling at different ranges of an isotropic seismic source with a seismic moment of 1e7 N.m in a smooth model of Mars velocity structure. Three solvers are compared: AxiSEM, OpenSWPC, and SPECFEM3D; The seismic moment rate function used for the AxiSEM modelling is a Gaussian of a period of 1s, and a Küpper wavelet with a period of 1s for OpenSWPC and SPECFEM3D. (2) The upper crust model used for the computation of surface waves group velocity of Figure 3, main text of Daubard et al (2020). The model has the following parameters: Density, vp and vs models used for group velocity computations at depths of 5 meter to 1 km. At depths less than 5 meters, model B9 of Lognonné et al. (2020) is used, while at depths below 1 km, the TAYAK model is used (Smrekar et al., 2019).
Data and Citation
doi:10.18715/jgr_newcratermod_2020

Data from the 2012 AVGR campaign for Lunar and Martian impacts

 

 

Resource type
Dataset
Creators
Ames Vertical Gun Range (AVGR), Ames Research Center
James E Richardson
Sharon Kedar
Publisher
Institut de Physique du Globe de Paris (IPGP)
Publication Year
2020
Abstract

The AVGR is a unique facility, allowing for the experimental investigation of small-scale hypervelocity impacts in a controlled atmosphere and target bed, with a variation of impact velocities and angles.

The June 2012 AVGR campaign aimed at investigating impact generated seismic signals on planetary surfaces, taking over from past experiments 40 years before. These new shots were conducted with up-to-date sensors and data reduction techniques. The target material and atmosphere were chosen to reproduce Lunar and Martian environments.

Here we provide the data of one of these experiments (Shot #13), with recorded acceleration signals (.sac files) from and impact at 1km/s in a Martian regolith proxy.

Data and Citation
doi:10.18715/AVGR_2012

Research papers in open access

Artist's view of the landing site showing his layered subsurface structure (© IPGP/Nicolas Sarter).

24 february 2020, Nature Geoscience

28 january 2019, Space Science Reviews

Last updated : 2 april 2020

Open PhD Thesis Offers for InSight in France

The SEIS project is offering several PhD in the participating teams. All PhD will start in September 2020. For more information, please contact the PhD supervisors and/or follow the guidelines in the PhD description below.

 

LPG ISAE small

New data analysis methods applied to Mars’ ground vibrations and the imaging of its internal structure

NASA's InSight mission successfully deployed a seismometer on the surface of Mars for the first time to measure the planet's very weak vibrations. The events detected make it possible to constrain the energy still present inside and to image the main internal structures.

This PhD thesis proposes to focus on the continuous seismic signal through original observables such as instantaneous phase or frequency while relying on innovative mathematical approaches (clustering, machine learning). The aim is to quantify the parts of the signal that are redundant in order to highlight out-layer phases and thus potentially low energy earthquakes. The methods developed during this thesis will be tested and validated with terrestrial seismological data.

Skills:

  • Programming languages suitable for seismic signal processing and analysis of large data sets: Python (including ObsPy), ForTran, shell (Linux).

  • Advanced knowledge in applied mathematics, learning methods and statistics.

  • Basic knowledge in seismology.

Contact : Eric Beucler (This email address is being protected from spambots. You need JavaScript enabled to view it.) before June, 12th, 2020 for application. Detailed offer for this PhD available here.

 

CNES UP small

Using the Mars background SEIS seismic noise for inverting landing site, crust and upper mantle seismic structure (CNES/STEP Paris University)

The structure of the SEIS noise is not well understood. The first goal of the PhD will be to separate, by using both the SEIS and APSS data, the lander noise from the planet background seismic noise. This will request to process the complete collection of continuous data, as functions of wind direction and local time, in order to separate noise related to local origin from noise related to global or regional origin. This process will not be key for searching for micro-seismic noise, but also for improving the signal to noise ratio of all detected events, which will allow significant contribution to ongoing structural analysis made with the recorded quakes. The second goal of this project will be to couple observations, analysis and modeling of the SEIS data together with observation, analysis and modeling of the APSS (Banfield et al., 2019) data in order to constrain and model the source any observed micro-seismic and acoustic noise. The last goal of the PhD will be to constrain, with these seismic waves generated by the atmosphere, the subsurface and possibly the crustal and lithospheric structure of the planet, independently of quakes and impacts.

Contact : Ph. Lognonné (This email address is being protected from spambots. You need JavaScript enabled to view it.) before March, 9th, 2020 for application. Deadline expected on the CNES PhD site by March 30th. Detailed offer for this PhD available here.

 

ISAE Lagrange small

Gravimetry and stresses of Mars and its Moons (ISAE-SUPAERO/Lagrange).

The goal of this Phesis is to develop the tools allowing the modeling of the gravity fields and internal stresses of Mars, of the Martian Moon and of the small bodies of the solar systems. This will be done in the frame of the data analysis of the InSight and MMX mission, but also to support other missions like HERA and PSYCHE. Validation will be made with the data from NEAR, HAYABUSA, HAYABUSA-2 et OSIRIS-REX.

Contact: Raphael Garcia (This email address is being protected from spambots. You need JavaScript enabled to view it.) and Mark Wieczoreck (This email address is being protected from spambots. You need JavaScript enabled to view it.). Detailed offer for this PhD available here.

Last updated : 17 april 2020

Open Post-Docs Positions for InSight in France

Post-docs positions are currently available for two projects : MAGIS (ANR/CNES) and Horizon 2020.

ANR CNES

NASA InSight mission has landed on Mars in late 2018 and is sending back since February high quality seismic and meteorological data, including 20 sample per seconds 3 axis Very Broad Band (VBB) ground velocity data and 10 sample per second pressure data.

In the frame of the Agence Nationale de la Recherche MAGIS project (MArs Geophysics with InSight) and with the support of the French Space Agency, CNES, 5 postdoc positions are open in France in Planetary seismology, Planetary atmospheric Science, Planetary acoustic and high pressure/mineralogy :

 

ISAE small

Postdoc at Toulouse ISAE-SUPAERO

She/He will participate to the analysis, understanding and inversion of the recorded ground deformation related to atmospheric pressure waves and variations. The analysis of the first set of INSIGHT records clearly demonstrates that these data are capable of providing new constraints on Mars atmosphere physics.

The first objective of the postdoc will be to process extensively INSIGHT records in order to constrain the source and propagation of Mars atmospheric waves. A second objective will be to link these observations to Mars atmosphere dynamics. In order to do so, the applicant will define a way to use and develop numerical simulation codes in order to simulate the various observations. Contact: Dr. Raphael Garcia (rThis email address is being protected from spambots. You need JavaScript enabled to view it.). Detailed offer in PDF.

 

IRAP small

Postdoc at Toulouse IRAP

The goal of the postdoc project is measure the elastic parameters and the sound velocities (Vp, Vs) of minerals candidate for Mars' mantle. The final goal is the estimation of the mineralogical composition of the mantle of Mars from the Mars Insight SEIS data. He/She will perform high-pressure high-temperature experiments in conjunction with synchrotron X-ray radiation and ultrasonic interferometry.

The position requires a highly motivated applicant with an interest in high pressure and temperature physics and chemistry, and planetary science. The candidate should have a background in either high-pressure experiments or elasticity of solids. Contact: Frédéric Béjina (This email address is being protected from spambots. You need JavaScript enabled to view it.). Detailed offer in PDF.

 

LMD small

Postdoc position in Paris at Laboratoire de Météorologie Dynamique (LMD)

She/He will carry out research aiming at characterizing the meteorological signals at all spatial and temporal scales, as recorded by InSight’s weather station or seismometers. For the local turbulent scale, Large Eddy Simulations will be used in order to approach the upper frequency of measurements and to study the complete turbulent spectrum on Mars.

For the global scale and the mesoscale, the search and expected analysis of global weather, slope winds, gravity waves, bores will push the LMD Mars Global Climate Model toward unprecedented horizontal (<15 km) and vertical resolution. In complement to that high resolution GCM approach, the LMD Mars Mesoscale Model will be employed to analyze mesoscale atmospheric signatures in the specific region of the InSight landing site. Contact: Dr. Aymeric Spiga (This email address is being protected from spambots. You need JavaScript enabled to view it.). Detailed offer in PDF.

 

Lagrange small

Postdoc position in Nice at Lagrange-Observatoire de Nice

One of the key objectives of the InSight mission is to constrain how the crust of Mars formed and evolved over time, from the initial differentiation of the planet to subsequent modification by magmatic and impact processes. From seismic measurements, the InSight mission will provide definitive information about the deep structure of the crust of Mars. We expect to determine the crustal thickness at the InSight landing, to detect any large-scale layering that might be present within the crust, and to quantify scattering processes that may be a result of impact fracturing of the crust.

He/She will investigate global processes concerning crust formation, bulk crustal composition, and magmatic and impact modification of the Martian crust. Depending on the expertise of the candidate, projects could involve thermal evolution modeling, remote sensing studies of bulk crustal composition, studies of the bulk composition of Mars using sample data, gravity studies of the crust and upper mantle, or seismic methods that could constrain lateral variations in crustal thickness. Contact: Dr. Mark Wieczorek (This email address is being protected from spambots. You need JavaScript enabled to view it.). Detailed offer in PDF.

Application deadline : extended to September, 2020.

 

IPGP UP small

Postdoc position in Paris at Institut de Physique du Globe de Paris (IPGP)

After more than one year of operation, the InSight mission has now recorded several hundred of events and has collected long time series for the 6 seismic channels and pressure/wind channels. These data sets enable now systematic data analysis, enabling stack/cross-correlation on both events and noise and enhancement of the signal to noise thanks to pressure decorrelation and other noise correction technics.

The goal of this postdoc will be to develop more and more automatic seismic signal processing technics on the InSight SEIS data pipeline, on both the detected events and on noise, and to initiate waveform inversions for 1D and 3D structure with local and regional events, including through the search of long period signals associated to either events or to continuous excitation of Mars micro-seismic noise. Contact: Pr Philippe Lognonné (This email address is being protected from spambots. You need JavaScript enabled to view it.). Detailed offer in PDF.

General informations

The duration of the contracts varies from 15 months to 24 months and can start on April 1st. Salary follows French university standards and depends on the research experience since the PhD defense. All basic insurance benefits are provided. Applicants should send a cover letter, curriculum vitae, statement of research interests and contact information for a minimum of two references. See additional details for each application. 

Application received by February, 20th, will be considered for the first selection process, but the positions will remain open until filled.

Last updated : 16 april 2020

Mars Seismic Catalogues

The Mars Seismic Catalogues are produced by the Marsquake Service (MQS).


Mars Seismic Catalogue, Version 14 - doi:10.12686/a21

Released on March 31, 2023. Includes Martian seismic events up to December 31, 2022 / Sol 1456:

For all details, see the documentation (pdf)


Mars Seismic Catalogue, Version 13 - doi:10.12686/a19

Released on January 3, 2023. Includes Martian seismic events up to September 30, 2022 / Sol 1367:

For all details, see the documentation (pdf)


Mars Seismic Catalogue, Version 12 - doi:10.12686/a18

Released on September 30, 2022. Includes Martian seismic events up to June 30, 2022 / Sol 1277:

For all details, see the documentation (pdf)


 Mars Seismic Catalogue, Version 11 - doi:10.12686/a17

Released on July 1, 2022. Includes Martian seismic events up to March 31, 2022 / Sol 1189:

For all details, see the documentation (pdf)


Mars Seismic Catalogue, Version 10 - doi:10.12686/a16

Released on May 12, 2022. Includes Martian seismic events up to December 31, 2021 / Sol 1101:

For all details, see the documentation (pdf)


Mars Seismic Catalogue, Version 9 - doi:10.12686/a14

Released on January 24, 2022. Includes Martian seismic events up to September 30, 2021 / Sol 1011:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 8 - doi:10.12686/a13

Released on October 1th, 2021. Includes Martian seismic events up to June 30, 2021 / Sol 922:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 7 - doi:10.12686/a12

Released on August 24, 2021. Includes Martian seismic events up to March 31, 2021 / Sol 833:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 6 - doi:10.12686/a11

Released on April 1st, 2021. Includes Martian seismic events up to December 31, 2020 / Sol 746:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 5 - doi:10.12686/a10

Released on January 4, 2021. Includes Martian seismic events up to October 12, 2020 / Sol 668:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 4 - doi:10.12686/a9

Released on October 1, 2020. Includes Martian seismic events up to June 30, 2020 / Sol 567:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 3 - doi:10.12686/a8

Released on July 1, 2020. Includes Martian seismic events up to March 31, 2020 / Sol 478:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 2 - doi:10.12686/a7

Released on April 1, 2020. Includes Martian seismic events up to December 31, 2019 / Sol 389:

For all details, see the documentation (pdf).


Mars Seismic Catalogue, Version 1 - doi:10.12686/a6

Released on January 2, 2020. Includes Martian seismic events up to September 30, 2019 / Sol 299:

For all details, see the documentation (pdf).

 

SEIS data is released to the public according the InSight Data Schedule below.

The data is open simultaneously through the Geosciences Node Data at the Planetary Data System, the IRIS Data Services and the IPGP Data Center Services.

Nominal date of start of science monitoring is 1 April 2019. Nominal end of extended mission is 31 January 2023.

Date Release Description            Time Period                   
2018-11-26   Start of commissioning phase  
2019-04-01   Start of science monitoring phase  
2019-05-24 1a Raw data 2018-11-26 - 2019-02-28
2019-06-26 1b Calibrated data only 2018-11-26 - 2019-03-31
2019-09-23 2 Raw, calibrated, derived data 2019-04-01 - 2019-06-30
2020-01-02 3 Raw, calibrated, derived data 2019-07-01 - 2019-09-30
2020-04-01 4 Raw, calibrated, derived data 2019-10-01 - 2019-12-31
2020-07-01 5 Raw, calibrated, derived data 2020-01-01 - 2020-03-31
2020-10-01 6 Raw, calibrated, derived data 2020-04-01 - 2020-06-30
2021-01-04 7 Raw, calibrated, derived data 2020-07-01 - 2020-10-12
2021-04-01 8 Raw, calibrated, derived data 2020-10-13 - 2020-12-31
2021-07-01 9 Raw, calibrated, derived data 2021-01-01 - 2021-03-31
 2021-10-01 10  Raw, calibrated, derived data  2021-04-01 - 2021-06-30
 2022-01-04 11 Raw, calibrated, derived data  2021-07-01 - 2021-09-30
 2022-04-01 12 Raw, calibrated, derived data  2021-10-01 - 2021-12-31
 2022-07-01 13 Raw, calibrated, derived data  2022-01-01 - 2022-03-31
 2022-09-30 14 Raw, calibrated, derived data  2022-04-01 - 2022-06-30
 2023-01-03 15  Raw, calibrated, derived data  2022-07-01 - 2022-09-30
 2023-03-31 16  Raw, calibrated, derived data  2022-10-01 - 2022-12-31
2023-10-01 17 Final revisions to data products Whole mission

SEIS Data availability

Current data available is the calibrated SEIS Data from December 1, 2018 to December 31, 2022, sol 1456.

Please, select a station to draw a graph.

No data for this station.

The following interface provides access to the SEIS data through the IPGP Data Center Services.

When using SEIS Data, please include the following citation information.


BASIC INFORMATION

ADVANCED OPTIONS

Click the link to submit your request to the fdsnws/station service


REQUIRED INFORMATION

ADVANCED OPTIONS

Click the link to submit your request to the fdsnws/dataselect service

To learn more about FDSN web service, take a look to IRIS Data Services documentation.

The reference format of SEIS metadata is the SEED. Metadata information is also available in FDSN stationXML format using FDSN webservice fdsnws-station.

When using SEIS Data, please include the following citation information.

Access to Dataless SEED files

StationSite NameDescription 
ELYSE Elysium Planitia, Mars - Scientific data Scientific data from final configuration Download
ELYHK Elysium Planitia, Mars - Housekeeping data Scientific data from postlanding before instrument deployment Download
ELYS0 Elysium Planitia, Mars - Scientific data Scientific data from postlanding before instrument deployment Download
ELYH0 Elysium Planitia, Mars - Housekeeping data HK data from postlanding before instrument deployment Download

To download a dataless SEED, please save the file (click right bottom)

 

Access to metadata information via the web service station

The following interface provides access to the SEIS data through the IPGP Data Center Services.


BASIC INFORMATION

ADVANCED OPTIONS

Click the link to submit your request to the fdsnws/station service


REQUIRED INFORMATION

ADVANCED OPTIONS

Click the link to submit your request to the fdsnws/dataselect service

Go to  IRIS Data Services documentation to learn more.

Citation when using SEIS Data

SEIS data must be cited as reference in the following way:

Citation in text :

InSight Mars SEIS Data Service. (2019). SEIS raw data, Insight Mission. IPGP, JPL, CNES, ETHZ, ICL, MPS, ISAE-Supaero, LPG, MFSC.
https://doi.org/10.18715/SEIS.INSIGHT.XB_2016

In addition an acknowledgement must also be provided to the SEIS operators as follows:

"We acknowledge NASA, CNES, their partner agencies and Institutions (UKSA, SSO, DLR, JPL, IPGP-CNRS, ETHZ, IC, MPS-MPG) and the flight operations team at JPL, SISMOC, MSDS, IRIS-DMC and PDS for providing SEED SEIS data."

Furthermore, the SEIS experiment paper (Lognonné et al., 2019) must be used as reference for describing the instrument, in addition to the SEIS team papers used by the user for the analysis. For a collection of SEIS papers, see Banerdt and Russel, 2017 and Banerdt and Russel, 2019.

 

 

Welcome to the scientific section of the SEIS website

This section will provide you :

  • Open access to the scientific and housekeeping data for SEIS.

  • Documentation about SEIS data and the data currently available.

  • Access to the Mars seismic catalogues produced by the Marsquake Service (MQS).

  • PhD and PostDocs positions.

  • List of SEIS papers.

  • Supplementary materials of SEIS papers.

Data description

The six sensors of SEIS (SEIS: Insight’s Seismic Experiment for Internal Structure of Mars - Lognonné and al. (2019) Space Science Review 215:12) cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data are transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1sps, and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams are augmented by requested event data with sample rates from 20 to 100 sps.

SEIS data products are downlinked from the spacecraft in raw CCSDS packets and converted to both the Standard for the Exchange of Earthquake Data (SEED) format files and ASCII tables (GeoCSV) for analysis and archiving. Metadata are available in dataless SEED and StationXML. Time series data (waveforms) are available in miniseed and GeoCSV. Data are distributed according FDSN formats and interfaces.

Wind, pressure, and temperature data from the Auxiliary Payload Sensor Suite (APSS) will also be available in SEED format, and can be used for decorrelation and diagnostic purposes on SEIS.

The SEIS Data in SEED format

The temporary FDSN Network Code XB has been reserved  for the InSight Mission, from 2016 to 2023.

The following table summarizes the instruments codes used for SEIS Data as defined by the SEED standard.

 

Instrument Intrument Code
High Gain Seismometer H
Low Gain Seismometer L
Mass Position Seismometer M
Short Period Seismometer H
Pressure D
Magnetometer F
Temperature K
Wind W
Synthetized beam data Z
Non-specific instruments Y

For detailed description of channels available in SEIS data, take a look at station and channel naming convention.

Since the begining of 2021, the LOBT (Local On-Board Time) is being included in the header of each miniseed record using the blockette 500 (Timing). At the end of the Mission, the LOBT will be included in all SEIS data.

For more information about the blockette 500 (Timing) and SEIS LOBT:

  • Implementation of SEIS Data in mini-SEED format by SISMOC  (pdf)
  • SEED manual, Chapter 8 - Data Records : [500] Timing Blockette (pdf)

 

The SEIS Data Flow

The SEIS Data Flow

 

 

 

NASA JPL - Oxford University - Imperial College London - CNES - ISAE - MPS - IPGP - ETH